Analytical scale ultrasonic standing wave manipulation of cells and microparticles

被引:80
|
作者
Coakley, WT [1 ]
Hawkes, JJ [1 ]
Sobanski, MA [1 ]
Cousins, CM [1 ]
Spengler, J [1 ]
机构
[1] Cardiff Univ, Sch Biosci, Cardiff CF10 3TL, S Glam, Wales
基金
英国生物技术与生命科学研究理事会;
关键词
acoustic streaming; antigen detection; blood separation; immunoassay; radiation pressure; ultrasonic standing wave;
D O I
10.1016/S0041-624X(99)00151-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The ultrasonic standing-wave manipulation of suspended eukaryotic cells, bacteria and submicron latex or silica particles has been examined here. The different systems, involving plane or tubular ultrasonic transducers and a range of acoustic pathlengths, have been designed to treat suspension volumes of analytical scale i.e. 5 ml to 50 mu l for both sample batch and 'on-line' situations. Frequencies range from 1 to 12 MHz. The influence of secondary cell-cell interaction forces in determining the cell concentration dependence of harvesting efficiency in batch sedimentation systems is considered. Applications of standing wave radiation forces to (1) clarify cell suspensions, (2) enhance particle agglutination immunoassay detection of cells or cellular products and (3) examine and enhance cell-cell interactions in suspension are described. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:638 / 641
页数:4
相关论文
共 50 条
  • [21] A laminar flow expansion chamber facilitating downstream manipulation of particles concentrated using an ultrasonic standing wave
    Hawkes, JJ
    Barrow, D
    Cefai, J
    Coakley, WT
    ULTRASONICS, 1998, 36 (08) : 901 - 903
  • [22] Laminar flow expansion chamber facilitating downstream manipulation of particles concentrated using an ultrasonic standing wave
    Univ of Wales Cardiff, Cardiff, United Kingdom
    Ultrasonics, 8 (901-903):
  • [23] Multi-wavelength Ultrasonic Standing Wave Device for Non-invasive Cell Manipulation and Characterisation
    Qiu, Yongqiang
    Demore, Christine
    Sharma, Srikanta
    Cochran, Sandy
    Hughes, David A.
    Weijer, Kees
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 188 - 191
  • [24] PARTICLE MANIPULATION BY ULTRASONIC STANDING-WAVE FIELDS TO COMPLEMENT DYNAMIC LIGHT-SCATTERING EXPERIMENTS
    HOLWILL, IL
    DAVIES, GB
    TITCHENERHOOKER, NJ
    HOARE, M
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1995, 12 (03) : 139 - 147
  • [25] Optical trapping of nanoparticles and microparticles by a Gaussian standing wave
    Zemánek, P
    Jonás, A
    Srámek, L
    Liska, M
    OPTICS LETTERS, 1999, 24 (21) : 1448 - 1450
  • [26] Microorganism manipulation and microparticle arrangement by the use of ultrasonic standing waves
    Saito, M
    Kitamura, N
    Terauchi, M
    BIOMEMS AND SMART NANOSTRUCTURES, 2001, 4590 : 26 - 37
  • [27] ULTRASONIC MOTOR USING FLEXURAL STANDING WAVE
    IIJIMA, T
    WADA, M
    NAKAGAWA, Y
    ITOH, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 : 191 - 193
  • [28] Forces and torques on rods in an ultrasonic standing wave
    Greve, D. W.
    Dauson, E. R.
    Oppenheim, I. J.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [29] Optimization of Ultrasonic Acoustic Standing Wave Systems
    Dunst, Paul
    Hemsel, Tobias
    Bornmann, Peter
    Littmann, Walter
    Sextro, Walter
    ACTUATORS, 2020, 9 (01)
  • [30] A new linear standing wave ultrasonic motor
    Zhang, F
    Chen, WS
    Xie, T
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 3, 2004, : 992 - 997