The maximum resource bin packing problem

被引:15
|
作者
Boyar, Joan [1 ]
Epstein, Leah
Favrholdt, Lene M.
Kohrt, Jens S.
Larsen, Kim S.
Pedersen, Morten M.
Wohlk, Sanne
机构
[1] Univ So Denmark, Dept Math & Comp Sci, Odense, Denmark
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[3] Aarhus Sch Business, Dept Accounting Finance & Logist, Aarhus, Denmark
基金
以色列科学基金会;
关键词
bin packing; dual bin packing; approximation; on-line;
D O I
10.1016/j.tcs.2006.06.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used or minimize the number or total size of accepted items. We consider off-line and on-line variants of the problems. For the off-line variant, we require that there be an ordering of the bins, so that no item in a later bin fits in an earlier bin. We find the approximation ratios of two natural approximation algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of 1/k on the item sizes, for some integer k. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [21] The stochastic generalized bin packing problem
    Perboli, Guido
    Tadei, Roberto
    Baldi, Mauro M.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1291 - 1297
  • [22] Algorithm NextFit for the Bin Packing Problem
    Fujiwara, Hiroshi
    Adachi, Ryota
    Yamamoto, Hiroaki
    FORMALIZED MATHEMATICS, 2021, 29 (03): : 141 - 151
  • [23] ON A GENERALIZED BIN-PACKING PROBLEM
    LEWIS, RT
    PARKER, RG
    NAVAL RESEARCH LOGISTICS, 1982, 29 (01) : 119 - 145
  • [24] A note on a selfish bin packing problem
    Ruixin Ma
    György Dósa
    Xin Han
    Hing-Fung Ting
    Deshi Ye
    Yong Zhang
    Journal of Global Optimization, 2013, 56 : 1457 - 1462
  • [25] Bin Packing Problem with Time Lags
    Letelier, Orlando Rivera
    Clautiaux, Francois
    Sadykov, Ruslan
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (04) : 2249 - 2270
  • [26] A typical problem of bin-packing
    Figueroa Mata, Geovanni
    Carrera Retana, Ernesto
    TECNOLOGIA EN MARCHA, 2011, 24 (02): : 34 - 43
  • [27] The Bin Packing Problem with Precedence Constraints
    Dell'Amico, Mauro
    Diaz, Jose Carlos Diaz
    Iori, Manuel
    OPERATIONS RESEARCH, 2012, 60 (06) : 1491 - 1504
  • [28] Algorithms for the Bin Packing Problem with Conflicts
    Fernandes-Muritiba, Albert E.
    Iori, Manuel
    Malaguti, Enrico
    Toth, Paolo
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (03) : 401 - 415
  • [29] Algorithms for the bin packing problem with scenarios
    Borges, Yulle G. F.
    de Lima, Vinicius L.
    Miyazawa, Flavio K.
    Pedrosa, Lehilton L. C.
    de Queiroz, Thiago A.
    Schouery, Rafael C. S.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (04)
  • [30] Bin-packing problem with concave costs of bin utilization
    Li, CL
    Chen, ZL
    NAVAL RESEARCH LOGISTICS, 2006, 53 (04) : 298 - 308