The maximum resource bin packing problem

被引:15
|
作者
Boyar, Joan [1 ]
Epstein, Leah
Favrholdt, Lene M.
Kohrt, Jens S.
Larsen, Kim S.
Pedersen, Morten M.
Wohlk, Sanne
机构
[1] Univ So Denmark, Dept Math & Comp Sci, Odense, Denmark
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[3] Aarhus Sch Business, Dept Accounting Finance & Logist, Aarhus, Denmark
基金
以色列科学基金会;
关键词
bin packing; dual bin packing; approximation; on-line;
D O I
10.1016/j.tcs.2006.06.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used or minimize the number or total size of accepted items. We consider off-line and on-line variants of the problems. For the off-line variant, we require that there be an ordering of the bins, so that no item in a later bin fits in an earlier bin. We find the approximation ratios of two natural approximation algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of 1/k on the item sizes, for some integer k. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [1] The maximum resource bin packing problem
    Boyar, J
    Epstein, L
    Favrholdt, LM
    Kohrt, JS
    Larsen, KS
    Pedersen, MM
    Wohlk, S
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 397 - 408
  • [2] Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem
    Peeters, M
    Degraeve, Z
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (02) : 416 - 439
  • [3] Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems
    Lin, Mingen
    Yang, Yang
    Xu, Jinhui
    ALGORITHMICA, 2010, 57 (02) : 232 - 251
  • [4] Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems
    Mingen Lin
    Yang Yang
    Jinhui Xu
    Algorithmica, 2010, 57 : 232 - 251
  • [5] Improved approximation algorithms for Maximum Resource Bin Packing and Lazy Bin Covering problems
    Lin, Mingen
    Yang, Yang
    Xu, Jinhui
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 567 - +
  • [6] Upper bounds and algorithms for the maximum cardinality bin packing problem
    Labbé, M
    Laporte, G
    Martello, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 149 (03) : 490 - 498
  • [7] Evolutionary Algorithms for Bin Packing Problem with Maximum Lateness and Waste Minimization
    Quesada, Jesus
    Gil-Gala, Francisco J.
    Durasevic, Marko
    Sierra, Maria R.
    Varela, Ramiro
    BIOINSPIRED SYSTEMS FOR TRANSLATIONAL APPLICATIONS: FROM ROBOTICS TO SOCIAL ENGINEERING, PT II, IWINAC 2024, 2024, 14675 : 140 - 149
  • [8] On the online bin packing problem
    Seiden, SS
    JOURNAL OF THE ACM, 2002, 49 (05) : 640 - 671
  • [9] On the online bin packing problem
    Seiden, SS
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 237 - 248
  • [10] Bin packing problem with scenarios
    Attila Bódis
    János Balogh
    Central European Journal of Operations Research, 2019, 27 : 377 - 395