Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces

被引:15
|
作者
Chen, Lu [1 ]
Lu, Guozhen [2 ]
Luo, Xiang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Multi-parameter Fourier multiplier; Multi-parameter Triebel-Lizorkin spaces; Multi-parameter Besov-Lipschitz spaces; Strong maximal functions; Littlewood-Paley decomposition; CALDERON-ZYGMUND THEORY; SINGULAR-INTEGRALS; JOURNES CLASS; FLAG KERNELS;
D O I
10.1016/j.na.2015.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is three-fold. First, we prove that under the limited smoothness conditions, multi-parameter Fourier multiplier operators are bounded on multi-parameter Triebel-Lizorkin and Besov-Lipschitz spaces by the Littlewood-Paley decomposition and the strong maximal operator. Second, we offer a different and more direct method to deal with the boundedness instead of transforming Fourier multiplier operators into multi-parameter Calderon-Zygmund operators. Third, we also prove the boundedness of multi-parameter Fourier multiplier operators on weighted multi-parameter Triebel-Lizorkin and Besov-Lipschitz spaces when the Fourier multiplier is only assumed with limited smoothness. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条
  • [1] A Remark Related Pseudo-Differential Operators on Multi-Parameter Besov-Lipschitz and Triebel-Lizorkin Spaces
    Xu, Chengdan
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [2] INEQUALITIES IN HOMOGENEOUS TRIEBEL-LIZORKIN AND BESOV-LIPSCHITZ SPACES
    Wang, Lifeng
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1318 - 1393
  • [3] Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the caseq<1
    H. Q. Bui
    M. Paluszyński
    M. Taibleson
    [J]. Journal of Fourier Analysis and Applications, 1997, 3 : 837 - 846
  • [4] INHOMOGENEOUS MULTI-PARAMETER BESOV AND TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH DIFFERENT HOMOGENEITIES AND BOUNDEDNESS OF COMPOSITION OPERATORS
    Tan, Jian
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 747 - 769
  • [5] Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces
    Pineda, Ebner
    Urbina, Wilfredo
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 529 - 564
  • [6] Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure
    Pineda, Ebner
    Rodriguez, Luz
    Urbina, Wilfredo
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 27128 - 27150
  • [7] A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces
    Bui, HQ
    Paluszynski, M
    Taibleson, MH
    [J]. STUDIA MATHEMATICA, 1996, 119 (03) : 219 - 246
  • [8] MULTI-PARAMETER TRIEBEL-LIZORKIN AND BESOV SPACES ASSOCIATED WITH ZYGMUND DILATION
    Liao, Fanghui
    Liu, Zongguang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2019 - 2037
  • [9] LOCAL AND GLOBAL ESTIMATES FOR HYPERBOLIC EQUATIONS IN BESOV-LIPSCHITZ AND TRIEBEL-LIZORKIN SPACES
    Israelsson, Anders
    Rodriguez-Lopez, Salvador
    Staubach, Wolfgang
    [J]. ANALYSIS & PDE, 2021, 14 (01): : 1 - 44
  • [10] Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals
    Yong Ding
    Guo Zhen Lu
    Bo Lin Ma
    [J]. Acta Mathematica Sinica, English Series, 2010, 26 : 603 - 620