Relativistic Hamiltonians in many-body theories

被引:5
|
作者
Amore, P [1 ]
Barbaro, MB [1 ]
DePace, A [1 ]
机构
[1] IST NAZL FIS NUCL, SEZ TORINO, I-10125 TURIN, ITALY
来源
PHYSICAL REVIEW C | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevC.53.2801
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m(N). The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.
引用
收藏
页码:2801 / 2808
页数:8
相关论文
共 50 条
  • [21] The relativistic many-body problem and application to bottomonium
    Moshinsky, M
    Riquer, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2163 - 2174
  • [22] Meson structure in a relativistic many-body approach
    Llanes-Estrada, FJ
    Cotanch, SR
    PHYSICAL REVIEW LETTERS, 2000, 84 (06) : 1102 - 1105
  • [23] RELATIVISTIC MANY-BODY CALCULATIONS ON ATOMIC SYSTEMS
    LINDGREN, I
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 242 (4-6): : 269 - 284
  • [24] THE RELATIVISTIC MANY-BODY PROBLEM IN MOLECULAR THEORY
    KUTZELNIGG, W
    PHYSICA SCRIPTA, 1987, 36 (03) : 416 - 431
  • [25] A RELATIVISTIC GLAUBER EXPANSION FOR MANY-BODY SYSTEM
    朱熙泉
    何祚庥
    赵维勤
    鲍诚光
    Science China Mathematics, 1980, (12) : 1522 - 1532
  • [26] A RELATIVISTIC GLAUBER EXPANSION FOR MANY-BODY SYSTEM
    ZHU, XQ
    HE, ZX
    ZHAO, WQ
    BAO, CG
    SCIENTIA SINICA, 1980, 23 (12): : 1522 - 1532
  • [27] Relativistic multireference many-body perturbation theory
    Vilkas, MJ
    Koc, K
    Ishikawa, Y
    NEW TRENDS IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, VOL 1: BASIC PROBLEMS AND MODEL SYSTEMS, 2001, 6 : 191 - 218
  • [28] RELATIVISTIC COLLECTIVE VARIABLES FOR MANY-BODY SYSTEMS
    HESS, PO
    MOSHINSKY, M
    GREINER, W
    SCHMIDT, G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1982, 8 (11) : L179 - L183
  • [29] Learning Many-Body Hamiltonians with Heisenberg-Limited Scaling
    Huang, Hsin-Yuan
    Tong, Yu
    Fang, Di
    Su, Yuan
    PHYSICAL REVIEW LETTERS, 2023, 130 (20)
  • [30] Estimation of many-body quantum Hamiltonians via compressive sensing
    Shabani, A.
    Mohseni, M.
    Lloyd, S.
    Kosut, R. L.
    Rabitz, H.
    PHYSICAL REVIEW A, 2011, 84 (01):