Fractal properties of critical invariant curves

被引:9
|
作者
Hunt, BR
Khanin, KM
Sinai, YG
Yorke, JA
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
[2] RUSSIAN ACAD SCI,LD LANDAU THEORET PHYS INST,MOSCOW 117334,RUSSIA
关键词
thermodynamic formalism; fractal dimension; invariant measure; circle homeomorphism; rotation number; twist map; critical curve; renormalization;
D O I
10.1007/BF02175565
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 50 条
  • [21] Developing fractal curves
    Irving, Geoffrey
    Segerman, Henry
    JOURNAL OF MATHEMATICS AND THE ARTS, 2013, 7 (3-4) : 103 - 121
  • [22] DIFFERENTIABILITY OF FRACTAL CURVES
    Tae Sik Kim
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (04): : 827 - 835
  • [23] Differentiability of fractal curves
    Bandt, Christoph
    Kravchenko, Aleksey
    NONLINEARITY, 2011, 24 (10) : 2717 - 2728
  • [24] FRACTAL CURVES AND COMPLEXITY
    CUTTING, JE
    GARVIN, JJ
    PERCEPTION & PSYCHOPHYSICS, 1987, 42 (04): : 365 - 370
  • [25] Fractal Laplace transform: analyzing fractal curves
    Alireza Khalili Golmankhaneh
    Kerri Welch
    Cristina Serpa
    Rosana Rodríguez-López
    The Journal of Analysis, 2024, 32 : 1111 - 1137
  • [26] Pseudoautomorphisms with Invariant Curves
    Bedford, Eric
    Diller, Jeffery
    Kim, Kyounghee
    COMPLEX GEOMETRY AND DYNAMICS, 2015, : 1 - 27
  • [27] Fractal Laplace transform: analyzing fractal curves
    Golmankhaneh, Alireza Khalili
    Welch, Kerri
    Serpa, Cristina
    Rodriguez-Lopez, Rosana
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 1111 - 1137
  • [28] On the fractalization of invariant curves
    Jorba, A
    Tatjer, JC
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 619 - 624
  • [29] INVARIANT CURVES FOR MAPPINGS
    SMITH, HL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (05) : 1053 - 1067
  • [30] Critical properties of spherically symmetric accretion in a fractal medium
    Roy, Nirupam
    Ray, Arnab K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (02) : 733 - 740