Reproducing 2D Implicit Curves with Sharp Features

被引:2
|
作者
Zhao, Jingjie [1 ]
Wang, Jidong [1 ]
Zhao, Ruibin [1 ]
Pang, Mingyong [1 ]
机构
[1] Nanjing Normal Univ, Inst EduInfo Sci & Engn, Nanjing 210097, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
implicit curve; reproducing features; marching squares; visualization; PARAMETRIC CURVES; SEGMENTATION;
D O I
10.1109/CW.2018.00032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Implicit curves play an essential role in the societies of medicine, meteorology, geology, geo-physics, visualization and so on. In this paper, we propose an algorithm to visualize implicit curves and reproduce their sharp features in 2D plane. To access the subdivision cells of a user-defined 2D domain, our algorithm first creates a quadtree by using a top-down and adaptive quad tree construction technique. In each cell, the method locates exact one feature point of the numerical field defined by the implicit function defining an implicit curve. A discrete optimization technique is employed to calculate the feature points. A dual mesh is subsequently constructed for the quadtree by taking the feature points as its vertices. Our algorithm approximates local part of the implicit curve in each cell of the dual mesh with a modified version of the marching squares method. Collecting all the approximations in the cells, our method finally reproduces the implicit curve with sharp features. Experiments show that our method can efficiently extract the sharp features of implicit curves, and it can work with various implicit curves with or without sharp features robustly.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 50 条
  • [41] Modeling piecewise helix curves from 2D sketches
    Cherin, Nicolas
    Cordier, Frederic
    Melkemi, Mahmoud
    COMPUTER-AIDED DESIGN, 2014, 46 : 258 - 262
  • [42] MODULATED CIRCULAR ZONE PLATES - FOCUSING IN 2D CURVES
    KOLODZIEJCZYK, A
    JAROSZEWICZ, Z
    BARA, S
    JOURNAL OF MODERN OPTICS, 1991, 38 (01) : 81 - 88
  • [43] Variational superformula curves for 2D and 3D graphic arts
    Gielis, J
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING, 2004, : 119 - 124
  • [45] A novel numerical scheme for reproducing kernel space of 2D fractional diffusion equations
    Tian, Siyu
    Liu, Boyu
    Wang, Wenyan
    AIMS MATHEMATICS, 2023, 8 (12): : 29058 - 29072
  • [46] A FAST IMPLICIT VARIABLE SPEED 2D WAVE EQUATION SOLVER
    Thavappiragasam, M.
    Viswanathan, A.
    Christlieb, A.
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [47] Implicit residual smoothing in a parallel 2D explicit Euler solver
    Gasparo, MG
    Pieraccini, S
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (03) : 313 - 324
  • [48] Parallel Implicit Solvers for 2D Numerical Models on Structured Meshes
    Zhang, Yaoxin
    Al-Hamdan, Mohammad Z.
    Chao, Xiaobo
    MATHEMATICS, 2024, 12 (14)
  • [49] Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
    Philip, Bobby
    Chacon, Luis
    Pernice, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (20) : 8855 - 8874
  • [50] Implicit surface reconstruction from 2D CT scan sections
    Pontier, S
    Shariat, B
    Vandorpe, D
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, : 583 - 586