A modified second-order Arnoldi method for solving the quadratic eigenvalue problems

被引:7
|
作者
Wang, Xiang [1 ,2 ]
Tang, Xiao-Bin [3 ]
Mao, Liang-Zhi [1 ,2 ]
机构
[1] Nanchang Univ, Sch Sci, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Sci, Numer Simulat & High Performance Comp Lab, Nanchang 330031, Jiangxi, Peoples R China
[3] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
关键词
Second-order Arnoldi method (SOAR); Krylov subspace; Quadratic eigenvalue problems (QEP); Arnoldi procedure; Rayleigh-Ritz orthogonal projection; KRYLOV SUBSPACE METHOD; NUMERICAL-SOLUTION; ALGORITHM;
D O I
10.1016/j.camwa.2016.11.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a pair of square matrices A and B and a vector u, a modified second-order Krylov subspace R-n(A, B; u) is first defined, which generalizes the standard Krylov subspace and the second-order Krylov subspace proposed by Bai and Su (2005). Then a modified second-order Arnoldi procedure for generating an orthonormal basis of R-n(A, B; u) has been presented. By applying the standard Rayleigh-Ritz orthogonal projection technique, a modified second-order Arnoldi method (MSOAR) for solving a large-scale quadratic eigenvalue problems (QEP) has been proposed. Finally, numerical experiments are given to show the efficiency of the new method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
  • [21] An Arnoldi Method for Nonlinear Eigenvalue Problems
    H. Voss
    BIT Numerical Mathematics, 2004, 44 : 387 - 401
  • [22] Block second-order Krylov subspace methods for large-scale quadratic eigenvalue problems
    Lin, Yiqin
    Bao, Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 413 - 422
  • [23] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    Ni, Guyan
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (03) : 715 - 732
  • [24] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Guyan Ni
    Journal of Global Optimization, 2021, 79 : 715 - 732
  • [25] Modified homotopy analysis method for solving systems of second-order BVPs
    Bataineh, A. Sami
    Noorani, M. S. M.
    Hashim, I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) : 430 - 442
  • [26] The Approximate Method for Solving Second-Order Fuzzy Boundary Value Problems
    Husin, Nurain Zulaikha
    Ahmad, Muhammad Zaini
    Akhir, Mohd Kamalrulzaman Md
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 1, 2022, 504 : 90 - 97
  • [27] SAPOR: Second-order arnoldi method for passive order reduction of RCS circuits
    Su, YF
    Wang, J
    Zeng, X
    Bai, ZJ
    Chiang, C
    Zhou, D
    ICCAD-2004: INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, IEEE/ACM DIGEST OF TECHNICAL PAPERS, 2004, : 74 - 79
  • [28] Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method
    Bai, ZJ
    Su, YF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1692 - 1709
  • [29] An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems
    Dallashi, Qamar
    Syam, Muhammed I.
    SYMMETRY-BASEL, 2022, 14 (06):
  • [30] Modified Bracketing Method for Solving Nonlinear Problems With Second Order of Convergence
    Qureshi, Umair Khalid
    Shaikh, Asif Ali
    Malhi, Prem Kumar
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (03): : 145 - 151