Thermal transport and Wiedemann-Franz law in the disordered Fermi liquid

被引:15
|
作者
Schwiete, G. [1 ,2 ,3 ]
Finkel'stein, A. M. [4 ,5 ,6 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[4] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[5] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[6] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 06期
基金
美国国家科学基金会;
关键词
INTERACTING-ELECTRON-SYSTEMS; METAL-INSULATOR-TRANSITION; QUANTUM CRITICAL-POINT; CONDUCTIVITY;
D O I
10.1103/PhysRevB.90.060201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study thermal transport at low temperatures in the disordered Fermi liquid with short-range interactions. Gravitational potentials are used as sources for finding the heat density and its correlation function. For a comprehensive study, we extend the renormalization group (RG) analysis developed for electric transport by including the gravitational potentials into the RG scheme. Our analysis reveals that the Wiedemann-Franz law remains valid even in the presence of quantum corrections caused by the interplay of diffusion modes and the electron-electron interaction. In the present scheme this fundamental relation is closely connected with a fixed point in the multiparametric RG flow of the gravitational potentials.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Understanding electrical-thermal transport characteristics of organic semiconductors: Violation of Wiedemann-Franz law
    Lu, Nianduan
    Li, Ling
    Gao, Nan
    Liu, Ming
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (19)
  • [22] Wiedemann-Franz law in a non-Fermi liquid and Majorana central charge: Thermoelectric transport in a two-channel Kondo system
    van Dalum, Gerwin A. R.
    Mitchell, Andrew K.
    Fritz, Lars
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [23] Deviation from Wiedemann-Franz law for the thermal conductivity of liquid tin and lead at elevated temperature
    Yamasue, E
    Susa, M
    Fukuyama, H
    Nagata, K
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2003, 24 (03) : 713 - 730
  • [24] Does the Wiedemann-Franz law work for quasicrystals?
    Vekilov, YK
    Isaev, EI
    Johansson, B
    PHYSICS LETTERS A, 2006, 352 (06) : 524 - 525
  • [25] Thermal conductivity in complex metallic alloys: Beyond Wiedemann-Franz law
    Macia, Enrique
    PHYSICAL REVIEW B, 2009, 79 (24)
  • [26] ''Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors'' - Comment
    Houssa, M
    Ausloos, M
    PHYSICAL REVIEW B, 1997, 56 (02): : 953 - 954
  • [27] Information on Wiedemann-Franz law III.
    Eucken, A
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE--STOCHIOMETRIE UND VERWANDTSCHAFTSLEHRE, 1928, 134 (3/4): : 220 - 229
  • [28] EXPERIMENTAL TEST OF THE WIEDEMANN-FRANZ LAW FOR INDIUM
    GOLDRATT, E
    GREENFIELD, AJ
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1980, 10 (03): : L95 - L99
  • [29] MOTT FORMULA FOR THE THERMOPOWER AND THE WIEDEMANN-FRANZ LAW
    JONSON, M
    MAHAN, GD
    PHYSICAL REVIEW B, 1980, 21 (10): : 4223 - 4229
  • [30] Wiedemann-Franz law in scattering theory revisited
    Karki, D. B.
    PHYSICAL REVIEW B, 2020, 102 (11)