QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.)

被引:74
|
作者
Burton, Amy L. [1 ]
Johnson, James M. [2 ]
Foerster, Jillian M. [2 ]
Hirsch, Candice N. [3 ,4 ]
Buell, C. R. [3 ,4 ]
Hanlon, Meredith T. [1 ]
Kaeppler, Shawn M. [2 ]
Brown, Kathleen M. [1 ]
Lynch, Jonathan P. [1 ]
机构
[1] Penn State Univ, Dept Plant Sci, University Pk, PA 16801 USA
[2] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[4] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
基金
美国农业部;
关键词
SYSTEM ARCHITECTURE; PHOSPHORUS ACQUISITION; GENETIC-IMPROVEMENT; PHASEOLUS-VULGARIS; DROUGHT-RESISTANCE; FIELD CONDITIONS; SEEDLING STAGE; WATER REGIMES; SHOOT TRAITS; UPLAND RICE;
D O I
10.1007/s00122-014-2353-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
QTL were identified for root architectural traits in maize. Root architectural traits, including the number, length, orientation, and branching of the principal root classes, influence plant function by determining the spatial and temporal domains of soil exploration. To characterize phenotypic patterns and their genetic control, three recombinant inbred populations of maize were grown for 28 days in solid media in a greenhouse and evaluated for 21 root architectural traits, including length, number, diameter, and branching of seminal, primary and nodal roots, dry weight of embryonic and nodal systems, and diameter of the nodal root system. Significant phenotypic variation was observed for all traits. Strong correlations were observed among traits in the same root class, particularly for the length of the main root axis and the length of lateral roots. In a principal component analysis, relationships among traits differed slightly for the three families, though vectors grouped together for traits within a given root class, indicating opportunities for more efficient phenotyping. Allometric analysis showed that trajectories of growth for specific traits differ in the three populations. In total, 15 quantitative trait loci (QTL) were identified. QTL are reported for length in multiple root classes, diameter and number of seminal roots, and dry weight of the embryonic and nodal root systems. Phenotypic variation explained by individual QTL ranged from 0.44 % (number of seminal roots, NyH population) to 13.5 % (shoot dry weight, OhW population). Identification of QTL for root architectural traits may be useful for developing genotypes that are better suited to specific soil environments.
引用
收藏
页码:2293 / 2311
页数:19
相关论文
共 50 条
  • [11] QTL mapping of maize (Zea mays L.) kernel traits under low-phosphorus stress
    Tao Jiang
    Chenghua Zhang
    Zhi Zhang
    Min Wen
    Hongbo Qiu
    Physiology and Molecular Biology of Plants, 2023, 29 (3) : 435 - 445
  • [12] QTL mapping of maize (Zea mays L.) kernel traits under low-phosphorus stress
    Jiang, Tao
    Zhang, Chenghua
    Zhang, Zhi
    Wen, Min
    Qiu, Hongbo
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (03) : 435 - 445
  • [13] Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
    Jinming Zhu
    Shawn M. Kaeppler
    Jonathan P. Lynch
    Plant and Soil, 2005, 270 : 299 - 310
  • [14] Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines
    Kumar, Bharath
    Abdel-Ghani, Adel H.
    Reyes-Matamoros, Jenaro
    Hochholdinger, Frank
    Luebberstedt, Thomas
    PLANT BREEDING, 2012, 131 (04) : 465 - 478
  • [15] Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
    Zhu, JM
    Kaeppler, SM
    Lynch, JP
    PLANT AND SOIL, 2005, 270 (1-2) : 299 - 310
  • [16] Mapping of Phenological Traits in Northeast China Maize (Zea mays L.)
    Wang, Xiaowei
    Li, Xiaoyu
    Gu, Jiatong
    Shi, Wenqi
    Zhao, Haigen
    Sun, Chen
    You, Songcai
    AGRONOMY-BASEL, 2022, 12 (10):
  • [17] Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.)
    Gong, Guantong
    Jia, Haitao
    Tang, Yunqi
    Pei, Hu
    Zhai, Lihong
    Huang, Jun
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [18] QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings
    Mano, Y
    Omori, F
    Muraki, M
    Takamizo, T
    BREEDING SCIENCE, 2005, 55 (03) : 343 - 347
  • [19] Shoot and root traits in drought tolerant maize(Zea mays L.) hybrids
    ZHAO Jin
    XUE Qing-wu
    Kirk E Jessup
    HOU Xiao-bo
    HAO Bao-zhen
    Thomas H Marek
    XU Wen-wei
    Steven R Evett
    Susan A O'Shaughnessy
    David K Brauer
    Journal of Integrative Agriculture, 2018, 17 (05) : 1093 - 1105
  • [20] Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids
    Zhao Jin
    Xue Qing-wu
    Jessup, Kirk E.
    Hou Xiao-bo
    Hao Bao-zhen
    Marek, Thomas H.
    Xu Wen-wei
    Evett, Steven R.
    O'Shaughnessy, Susan A.
    Brauer, David K.
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (05) : 1093 - 1105