Integrable models and combinatorics

被引:13
|
作者
Bogoliubov, N. M. [1 ,2 ]
Malyshev, C. L. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, Moscow 117901, Russia
[2] St Petersburg Natl Res Univ Informat Technol Mech, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
correlation functions; Heisenberg magnet; four-vertex model; plane partitions; generating functions; symmetric functions; XXO HEISENBERG CHAIN; VICIOUS WALKERS; 6-VERTEX MODEL; PLANE PARTITIONS; YOUNG TABLEAUX; BINOMIAL DETERMINANTS; FRIENDLY WALKERS; QUANTUM; LIMIT; BEHAVIOR;
D O I
10.1070/RM2015v070n05ABEH004964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relations between quantum integrable models solvable by the quantum inverse scattering method and some aspects of enumerative combinatorics and partition theory are discussed. The main example is the Heisenberg XXZ spin chain in the limit cases of zero or infinite anisotropy. Form factors and some thermal correlation functions are calculated, and it is shown that the resulting form factors in a special q-parametrization are the generating functions for plane partitions and self-avoiding lattice paths. The asymptotic behaviour of the correlation functions is studied in the case of a large number of sites and a moderately large number of spin excitations. For sufficiently low temperature a relation is established between the correlation functions and the theory of matrix integrals.
引用
收藏
页码:789 / 856
页数:68
相关论文
共 50 条
  • [41] Gravitational interactions of integrable models
    Abdalla, E
    Abdalla, MCB
    PHYSICS LETTERS B, 1996, 365 (1-4) : 41 - 45
  • [42] Cotangent Models for Integrable Systems
    Kiesenhofer, Anna
    Miranda, Eva
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (03) : 1123 - 1145
  • [43] ON N = 4 INTEGRABLE MODELS
    SAIDI, EH
    SEDRA, MB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (06): : 891 - 913
  • [44] Dispersionless limit of integrable models
    Brunelli, JC
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (02) : 455 - 468
  • [45] Multicharged dyonic integrable models
    Cabrera-Carnero, I
    Gomes, JF
    Sotkov, GM
    Zimerman, AH
    NUCLEAR PHYSICS B, 2002, 634 (03) : 433 - 482
  • [46] Integrable deformations of coupled σ-models
    Bassi, Cristian
    Lacroix, Sylvain
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [47] Cotangent Models for Integrable Systems
    Anna Kiesenhofer
    Eva Miranda
    Communications in Mathematical Physics, 2017, 350 : 1123 - 1145
  • [48] Integrable models with unstable particles
    Castro-Alvaredo, A
    Fring, A
    INFINITE DIMENSIONAL ALGEBRAS AND QUANTUM INTEGRABLE SYSTEMS, 2005, 237 : 59 - 87
  • [49] Integrable lattice models and holography
    Ashwinkumar, Meer
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [50] THE LUTTINGER LIQUID AND INTEGRABLE MODELS
    Sirker, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (22):