MTSegNet: Semi-supervised Abdominal Organ Segmentation in CT

被引:0
|
作者
Li, Shiman [1 ,2 ]
Yin, Siqi [1 ,2 ]
Zhang, Chenxi [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Sch Basic Med Sci, Digital Med Res Ctr, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Imaging Comp & Comp Assisted, Shanghai 200032, Peoples R China
关键词
Semi-supervised; Multi-organ; Abdominal segmentation;
D O I
10.1007/978-3-031-23911-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-organ segmentation from CT scan is useful in clinical applications. However, difficulties in data annotation impede its practical usage. In this work, we propose MTSegNet for multi-organ segmentation task in semi-supervised way. Total number of 13 organs in chest and abdomen are included. For network architecture, Attention U-Net serves as basic structure to guarantee segmentation performance and usage of context information. For those unlabeled data, Mean Teacher Model, which is a commonly used semi-supervised structure, is added to the pipeline to facilitate better use of unlabeled data. Besides, classaware weight and post-process are used as auxiliary methods to further improve performance of model. Experiments on validation set and test set got averaged Dice Similarity Coefficient (DSC) of 0.6743 and 0.7034, respectively.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [41] MULTIVALUED LABEL DIFFUSION FOR SEMI-SUPERVISED SEGMENTATION
    Buyssens, Pierre
    Lezoray, Olivier
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3275 - 3279
  • [42] Teeth Segmentation via Semi-Supervised Learning
    Gao, Yonghui
    Li, Xiaoxiao
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 558 - 563
  • [43] A semi-supervised color image segmentation method
    Qian, YT
    Si, WW
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 1541 - 1544
  • [44] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857
  • [45] Semi-Supervised Normalized Cuts for Image Segmentation
    Chew, Selene E.
    Cahill, Nathan D.
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1716 - 1723
  • [46] Semi-supervised Segmentation Based on Level Set
    Wang, Aixia
    Li, Jingjiao
    Wu, Peng
    Lu, Zhenlin
    INFORMATION AND BUSINESS INTELLIGENCE, PT II, 2012, 268 : 129 - 135
  • [47] Semi-supervised segmentation MRI stroke studies
    SoltanianZadeh, H
    Windham, JP
    Robbins, L
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 437 - 448
  • [48] Semi-supervised clustering: Application to image segmentation
    Figueiredo, Mario A. T.
    ADVANCES IN DATA ANALYSIS, 2007, : 39 - 50
  • [49] A semi-supervised approach for the semantic segmentation of trajectories
    Soares Junior, Amilcar
    Times, Valeria Cesario
    Renso, Chiara
    Matwin, Stan
    Cabral, Lucidio A. F.
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 145 - 154
  • [50] Weakly- and Semi-supervised Panoptic Segmentation
    Li, Qizhu
    Arnab, Anurag
    Torr, Philip H. S.
    COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 106 - 124