Numerical Approximation of Weakly Singular Integrals on a Triangle

被引:1
|
作者
Serafinil, Giada [1 ]
机构
[1] Univ Basilicata, Dept Math Comp Sci & Econ, Vle Ateneo Lucano 10, I-85100 Potenza, Italy
关键词
EQUATIONS;
D O I
10.1063/1.4965357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose product cubature rules based on the polynomial approximation in order to evaluate the following integrals I(F;y) = integral K-T(x,y)F(x)omega(x)dx, where x = (x(1), x(2)), y = (y(1), y(2)), K is a "weakly"singular or a "nearly"singular kernel, the domain T is the triangle of vertices (0, 0), (0, 1), (1, 0), f is a given bivariate function defined on T and omega is a proper weight function.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] CUBIC FORMULA FOR CLASS OF WEAKLY SINGULAR SURFACE INTEGRALS
    Khalilov, Elnur H.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 39 (47): : 69 - 76
  • [32] ERROR BOUNDS FOR COMPOUND QUADRATURE OF WEAKLY SINGULAR INTEGRALS
    FELDSTEIN, A
    MILLER, RK
    MATHEMATICS OF COMPUTATION, 1971, 25 (115) : 505 - +
  • [33] ADAPTED QUADRATIC APPROXIMATION FOR SINGULAR INTEGRALS EQUATIONS
    Nadir, Mostefa
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2012, 29 (05): : 84 - 89
  • [34] ON THE CONVERGENCE OF APPROXIMATION TO CAUCHY SINGULAR INTEGRALS BY WAVELETS
    胡继承
    杜金元
    数学杂志, 1997, (04) : 129 - 136
  • [35] ON APPROXIMATION OF FUNCTIONS BY GEGEN BAWER SINGULAR INTEGRALS
    Ibrahimov, Elman J.
    Jafarova, Saadat A.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2010, 33 (41): : 67 - 78
  • [36] An efficient quadrature rule for weakly and strongly singular integrals
    Liu, Guidong
    Xiang, Shuhuang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 447
  • [37] ON NUMERICAL COMPUTATION OF SINGULAR-INTEGRALS
    BOHMAN, J
    FROBERG, CE
    BIT, 1984, 24 (01): : 113 - 116
  • [38] Numerical quadrature for computing of singular integrals
    Stasek, Petr
    Kofron, Josef
    Najzar, Karel
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (02) : 175 - 193
  • [39] Numerical quadrature for singular integrals on fractals
    Gibbs, Andrew
    Hewett, David
    Moiola, Andrea
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2071 - 2124
  • [40] Numerical quadrature for singular integrals on fractals
    Andrew Gibbs
    David Hewett
    Andrea Moiola
    Numerical Algorithms, 2023, 92 : 2071 - 2124