Uniqueness and stability of an inverse problem for a phase field model using data from one component

被引:4
|
作者
Wu, Bin [1 ]
Chen, Qun [1 ]
Wang, Zewen [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] E China Inst Technol, Sch Sci, Dept Math, Nanchang 330013, Peoples R China
关键词
Phase field model; Inverse problem; Carleman estimate; Lipschitz stability; Uniqueness; LIPSCHITZ STABILITY; SYSTEM;
D O I
10.1016/j.camwa.2013.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining a spatial varying coefficient in a parabolic-hyperbolic phase field model with the following observation data of only one component: the order parameter in a subdomain omega satisfying partial derivative omega superset of partial derivative Omega along a sufficiently large time interval and at a suitable time over the whole spatial domain. Based on a Carleman estimate for the parabolic-hyperbolic phase field system, we prove the Lipschitz stability and uniqueness for this inverse problem. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2126 / 2138
页数:13
相关论文
共 50 条
  • [41] UNIQUENESS CONDITION FOR THE PHASE PROBLEM IN ONE DIMENSION
    SAULT, RJ
    OPTICS LETTERS, 1984, 9 (08) : 325 - 326
  • [42] Uniqueness and stability results for an inverse spectral problem in a periodic waveguide
    Kavian, Otared
    Kian, Yavar
    Soccorsi, Eric
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1160 - 1189
  • [43] Uniqueness and local stability for the inverse scattering problem of determining the cavity
    Lixin Feng
    Fuming Ma
    Science in China Series A: Mathematics, 2005, 48 : 1113 - 1123
  • [44] Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry
    Boychuk, IV
    Dolenko, TA
    Sabirov, AR
    Fadeev, VV
    Filippova, EM
    QUANTUM ELECTRONICS, 2000, 30 (07) : 611 - 616
  • [45] Uniqueness in inverse electromagnetic scattering problem with phaseless far-field data at a fixed frequency
    Xu, Xiaoxu
    Zhang, Bo
    Zhang, Haiwen
    IMA JOURNAL OF APPLIED MATHEMATICS, 2020, 85 (06) : 823 - 839
  • [46] Uniqueness for an inverse problem for a nonlinear parabolic system with an integral term by one-point Dirichlet data
    Hoemberg, Dietmar
    Lu, Shuai
    Yamamoto, Masahiro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) : 7525 - 7544
  • [47] LOCAL UNIQUENESS FOR AN INVERSE BOUNDARY VALUE PROBLEM WITH PARTIAL DATA
    Harrach, Bastian
    Ullrich, Marcel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 1087 - 1095
  • [48] COUNTEREXAMPLES TO UNIQUENESS IN THE INVERSE FRACTIONAL CONDUCTIVITY PROBLEM WITH PARTIAL DATA
    Railo, Jesse
    Zimmermann, Philipp
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (02) : 406 - 418
  • [49] Uniqueness from discrete data in an inverse spectral problem for a pencil of ordinary differential operators
    Brown, Malcolm
    Marletta, Marco
    Symons, Freddy
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 793 - 813
  • [50] On uniqueness of an inverse problem for a 1-D wave equation from transmission data
    Liu, JJ
    Wang, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (01) : 195 - 204