Uniqueness and stability of an inverse problem for a phase field model using data from one component

被引:4
|
作者
Wu, Bin [1 ]
Chen, Qun [1 ]
Wang, Zewen [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] E China Inst Technol, Sch Sci, Dept Math, Nanchang 330013, Peoples R China
关键词
Phase field model; Inverse problem; Carleman estimate; Lipschitz stability; Uniqueness; LIPSCHITZ STABILITY; SYSTEM;
D O I
10.1016/j.camwa.2013.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining a spatial varying coefficient in a parabolic-hyperbolic phase field model with the following observation data of only one component: the order parameter in a subdomain omega satisfying partial derivative omega superset of partial derivative Omega along a sufficiently large time interval and at a suitable time over the whole spatial domain. Based on a Carleman estimate for the parabolic-hyperbolic phase field system, we prove the Lipschitz stability and uniqueness for this inverse problem. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2126 / 2138
页数:13
相关论文
共 50 条