Finite-range multiplexing enhances quantum key distribution via quantum repeaters

被引:5
|
作者
Abruzzo, Silvestre [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
ATOMIC ENSEMBLES; LINEAR OPTICS; COMMUNICATION; CRYPTOGRAPHY; SECURITY;
D O I
10.1103/PhysRevA.89.012303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. Collins et al. [O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)] proposed multiplexing as a method to increase the repeater rate and to decrease the requirement of memory coherence time. Motivated by the experimental fact that long-range connections are practically demanding, in this paper we extend the original quantum repeater multiplexing protocol to the case of short-range connection. We derive analytical formulas for the repeater rate and we show that for short connection lengths it is possible to have most of the benefits of a full-range multiplexing protocol. Then we incorporate decoherence of quantum memories and we study the optimal matching for the Bell-state measurement protocol permitting us to minimize the memory requirements. Finally, we calculate the secret key rate and we show that the improvement via finite-range multiplexing is of the same order of magnitude as that via full-range multiplexing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Twin-field protocols: Towards intercity quantum key distribution without quantum repeaters
    Yin, Zhen-Qiang
    Lu, Feng-Yu
    Teng, Jun
    Wang, Shuang
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 93 - 95
  • [22] Concurrent Quantum Key Distribution using quantum teleportation and Time Division Multiplexing
    Wu, Xie
    Shan, Ouyang
    Xiao, Hailin
    Computer Modelling and New Technologies, 2014, 18 (11): : 212 - 218
  • [23] Quantum transport through a quantum well in the presence of a finite-range time-modulated potential
    Chu, CS
    Liang, HC
    CHINESE JOURNAL OF PHYSICS, 1999, 37 (05) : 509 - 518
  • [24] Quantum transport in the presence of a finite-range time-modulated potential
    Tang, CS
    Chu, CS
    PHYSICAL REVIEW B, 1996, 53 (08): : 4838 - 4844
  • [25] RIPPLON DISPERSION AND FINITE-RANGE EFFECTS IN THE QUANTUM-LIQUID SURFACE
    KROTSCHECK, E
    STRINGARI, S
    TREINER, J
    PHYSICAL REVIEW B, 1987, 35 (10): : 4754 - 4763
  • [26] Long range quantum key distribution using frequency multiplexing in broadband solid state memories
    Krovi, H.
    Dutton, Z.
    Guha, S.
    Fuchs, C.
    Tittel, W.
    Simon, C.
    Slater, J. A.
    Heshami, K.
    Hedges, M.
    Kanter, G. S.
    Huang, Y. -P.
    Thiel, C.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [27] Quantum key distribution with finite resources: Secret key rates via Renyi entropies
    Abruzzo, Silvestre
    Kampermann, Hermann
    Mertz, Markus
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [28] Finite key effects in satellite quantum key distribution
    Jasminder S. Sidhu
    Thomas Brougham
    Duncan McArthur
    Roberto G. Pousa
    Daniel K. L. Oi
    npj Quantum Information, 8
  • [29] Finite key effects in satellite quantum key distribution
    Sidhu, Jasminder S.
    Brougham, Thomas
    McArthur, Duncan
    Pousa, Roberto G.
    Oi, Daniel K. L.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [30] A FINITE-RANGE DISTRIBUTION OF FAILURE TIMES
    MUKHERJEE, SP
    ISLAM, A
    NAVAL RESEARCH LOGISTICS, 1983, 30 (03) : 487 - 491