Adjoint-based inverse design of nonlinear nanophotonic devices

被引:0
|
作者
Hughes, Tyler W. [1 ]
Minkov, Momchil [1 ]
Williamson, Ian A. D. [1 ]
Fan, Shanhui [1 ]
机构
[1] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We extend the frequency-domain adjoint method to nonlinear optical systems, which enables the gradient-based optimization and inverse design of novel devices. As illustrations, we devise compact photonic switches in a Kerr nonlinear material. (C) 2019 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Adjoint-Based Design of Rotors in a Noninertial Reference Frame
    Nielsen, Eric J.
    Lee-Rausch, Elizabeth M.
    Jones, William T.
    JOURNAL OF AIRCRAFT, 2010, 47 (02): : 638 - 646
  • [32] Inverse design of nanophotonic devices using generative adversarial networks
    Kim, Wonsuk
    Kim, Soojeong
    Lee, Minhyeok
    Seok, Junhee
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [33] Inverse Design of Nanophotonic Devices using Deep Neural Networks
    Kojima, Keisuke
    Tang, Yingheng
    Koike-Akino, Toshiaki
    Wang, Ye
    Jha, Devesh
    Parsons, Kieran
    Tahersima, Mohammad H.
    Sang, Fengqiao
    Klamkin, Jonathan
    Qi, Minghao
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [34] Self-adjusting inverse design method for nanophotonic devices
    Liu, Haida
    Wang, Qianqian
    Xiang, Zhengxin
    Teng, Geer
    Zhao, Yu
    Liu, Ziyang
    Wei, Kai
    Dai, Fengtong
    Lv, Linji
    Zhao, Kuo
    Yang, Chenyi
    OPTICS EXPRESS, 2022, 30 (21) : 38832 - 38847
  • [35] Improving the Robustness of Adjoint-based Airfoil Drag Reduction Design
    Fan, Yanhong
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 259 - 263
  • [36] Automatic adjoint-based design optimization for laminar combustion applications
    Mayer, Daniel
    Beishuizen, Nijso
    Pitsch, Heinz
    Economon, Thomas D.
    Carrigan, Travis
    FUEL, 2024, 370
  • [37] Generative Deep Learning Model for Inverse Design of Integrated Nanophotonic Devices
    Tang, Yingheng
    Kojima, Keisuke
    Koike-Akino, Toshiaki
    Wang, Ye
    Wu, Pengxiang
    Xie, Youye
    Tahersima, Mohammad H.
    Jha, Devesh K.
    Parsons, Kieran
    Qi, Minghao
    LASER & PHOTONICS REVIEWS, 2020, 14 (12)
  • [38] A New "Stepped Particle Swarm Optimization" for Inverse Design of Nanophotonic Devices
    Huang, Junjing
    Zhang, Enge
    Duan, Xiaofeng
    Liu, Kai
    Huang, Yongqing
    Ren, Xiaomin
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 1348 - 1351
  • [39] Reparameterization Approach to Gradient-Based Inverse Design of Three-Dimensional Nanophotonic Devices
    Gershnabel, Erez
    Chen, Mingkun
    Mao, Chenkai
    Wang, Evan W.
    Lalanne, Philippe
    Fan, Jonathan A.
    ACS PHOTONICS, 2023, 10 (04): : 815 - 823
  • [40] Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks
    Yan, Ruoqin
    Wang, Tao
    Jiang, Xiaoyun
    Huang, Xing
    Wang, Lu
    Yue, Xinzhao
    Wang, Huimin
    Wang, Yuandong
    NANOTECHNOLOGY, 2021, 32 (33)