Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso)

被引:80
|
作者
Hounkpatin, Ozias K. L. [1 ]
de Hipt, Felix Op [2 ]
Bossa, Aymar Yaovi [3 ]
Welp, Gerhard [1 ]
Amelung, Wulf [1 ]
机构
[1] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Soil Sci & Soil Ecol, Nussallee 13, D-53115 Bonn, Germany
[2] Univ Bonn, Dept Geog, Meckenheimer Allee 166, D-53115 Bonn, Germany
[3] West African Sci Serv Ctr Climate Change & Adapte, POB 9507, Ouagadougou 06, Burkina Faso
关键词
Soil organic carbon; Carbon stock; Random forest; Multiple linear regression land use; Reference soil group; LAND-USE CHANGE; RANDOM FOREST; REGIONAL-SCALE; REFLECTANCE SPECTROSCOPY; VERTICAL-DISTRIBUTION; SPATIAL-DISTRIBUTION; DEPTH DISTRIBUTION; CLIMATE-CHANGE; SEQUESTRATION; MATTER;
D O I
10.1016/j.catena.2018.04.013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Although the evaluation of soil organic carbon (SOC) stocks across different types of land use and major reference soil groups is essential for mitigating climate change, there remains, to date, limited comprehensive understanding of whole tropical soil profiles. Therefore, this study aimed to explain the amount of SOC stocks in different land-use systems and across various soil groups, as well as its spatial pattern in the topsoil (0-30 cm) and subsoil (30-100 cm) within the savannah zone of Burkina Faso. Roughly 70 soil profiles were considered along with additional auger sampling to account for spatial variation in both cropland (CR) and savannah (SA). The machine learning technique random forest regression (RFR) and multiple linear regression (MLR) were used for modeling the surface and subsurface SOC stocks. For model calibration, covariates including land use, topographic, texture, and climatic data were considered as surrogate for soil forming factors. The prediction maps produced by the calibrated models were validated by an independent dataset. The results indicated that about 53% of the SOC stock over 1 m depth was held in the upper 30 cm. Only a marginal difference was recorded between the topsoil SOC stock in SA (41.4 t C ha(-1)) and CR (39.1 t C ha(-1)) soils. For the subsoil, a significant difference (p < 0.05) was observed between the SOC stock of CR soils recording about 40.2 t C ha(-1) and SA soils with 26.3 t C ha(-1). Among the reference soil groups, the Gleysols located at lower elevation positions revealed the highest SOC stocks over 0-30 cm (44 t C ha(-1)) and 100 cm depth (86.6 t C ha(-1)). The Stagnosols (45.2 t C ha(-1)) followed by the Gleysols (42.7 t C ha(-1)) recorded the highest SOC stocks over 30-100 cm. The variability of SOC stock in the topsoil was primarily related to site-specific elements, such as particle-size fraction and wetness index, while its distribution in the subsoil was mainly associated with the topographical orientation represented by the slope aspect. Compared to the MLR, RFR estimated mean top- and subsoil SOC stocks of the catchment fairly well, along with lower statistical error metrics, though extreme values were not covered. Nevertheless, the findings on SOC stocks reinforce the view that the semi-arid ecosystems of West Africa still offer a significant opportunity for carbon sequestration for both topsoil and subsoil, and these results represent a baseline for future modeling of SOC dynamics in the region.
引用
收藏
页码:298 / 309
页数:12
相关论文
共 50 条
  • [41] Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso
    Qasim, Mohammad
    Porembski, Stefan
    Sattler, Dietmar
    Stein, Katharina
    Thiombiano, Adjima
    Lindner, Andre
    ENVIRONMENTS, 2016, 3 (04) : 1 - 16
  • [42] Institutional factors and farmers' adoption of conventional, organic and genetically modified cotton in Burkina Faso
    Meda, Yirviel Janvier Metouole
    Egyir, Irene Susana
    Zahonogo, Pam
    Jatoe, John Baptist Donsaananang
    Atewamba, Calvin
    INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY, 2018, 16 (01) : 40 - 53
  • [43] Soil organic carbon stocks in saline and sodic landscapes
    Wong, Vanessa N. L.
    Murphy, Brian W.
    Koen, Terry B.
    Greene, Richard S. B.
    Dalal, Ram C.
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2008, 46 (04): : 378 - 389
  • [44] Soil organic carbon stocks of afforested peatlands in Ireland
    Wellock, Michael L.
    Reidy, Brian
    Laperle, Christina M.
    Bolger, Thomas
    Kiely, Gerard
    FORESTRY, 2011, 84 (04): : 441 - 451
  • [45] Spatial distribution of soil organic carbon stocks in France
    Martin, M. P.
    Wattenbach, M.
    Smith, P.
    Meersmans, J.
    Jolivet, C.
    Boulonne, L.
    Arrouays, D.
    BIOGEOSCIENCES, 2011, 8 (05) : 1053 - 1065
  • [46] Mapping soil organic carbon stocks in Tunisian topsoils
    Bahri, Haithem
    Raclot, Damien
    Barbouchi, Meriem
    Lagacherie, Philippe
    Annabi, Mohamed
    GEODERMA REGIONAL, 2022, 30
  • [47] Regional patterns of soil organic carbon stocks in China
    Yu, D. S.
    Shi, X. Z.
    Wang, Ht
    Sun, W. X.
    Chen, J. M.
    Liu, Q. H.
    Zhao, Y. C.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2007, 85 (03) : 680 - 689
  • [48] Influence of forest management on soil organic carbon stocks
    Labeda, Damian
    Kondras, Marek
    SOIL SCIENCE ANNUAL, 2020, 71 (02) : 165 - 173
  • [49] Modelling and mapping soil organic carbon stocks in Brazil
    Gomes, Lucas Carvalho
    Faria, Raiza Moniz
    de Souza, Eliana
    Veloso, Gustavo Vieira
    Schaefer, Carlos Ernesto G. R.
    Fernandes Filho, Elpidio Inacio
    GEODERMA, 2019, 340 : 337 - 350
  • [50] Soil organic carbon stocks by soil group for afforested soils in Ireland
    Jarmain, Caren
    Cummins, Thomas
    Jovani-Sancho, Antonio Jonay
    Nairn, Tim
    Premrov, Alina
    Reidy, Brian
    Renou-Wilson, Florence
    Tobin, Brian
    Walz, Kilian
    Wilson, David
    Byrne, Kenneth A.
    GEODERMA REGIONAL, 2023, 32