Rank theorems of operators between Banach spaces

被引:13
|
作者
Ma, J [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
rank theorem; generalized inverse; operator-value map;
D O I
10.1007/BF02903841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E and F be Banach spaces, and B(E, F) all of bounded linear operators on E into F. Let T(0)is an element of B(E, F) with an outer inverse T-0(#) is an element of B( F, E). Then a characteristic condition of S =(I + T-0(#)(T - T-0))(-1) T-0(#) with T is an element of B(E, F) and parallel to T-0(#) (T- T-0) parallel to < 1, being a generalized inverse of T, is presented, and hence, a rank theorem of operators on E into F is established (which generalizes the rank theorem of matrices to Banach spaces). Consequently, an improved finite rank theorem and a new rank theorem are deduced. These results will be very useful to nonlinear functional analysis.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Existence theorems for set-valued operators in Banach spaces
    Matsushita, Shin-ya
    Takahashi, Wataru
    SET-VALUED ANALYSIS, 2007, 15 (03): : 251 - 264
  • [22] Representation Theorems for Operators on Free Banach Spaces of Countable Type
    J. Aguayo
    M. Nova
    J. Ojeda
    p-Adic Numbers, Ultrametric Analysis and Applications, 2019, 11 : 21 - 36
  • [23] Convergence Theorems for Accretive Operators with Nonlinear Mappings in Banach Spaces
    Song, Yan-Lai
    Ceng, Lu-Chuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [24] Existence theorems for m-accretive operators in Banach spaces
    García-Falset, J
    Morales, CH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) : 453 - 461
  • [25] Some Remarks on Integral Operators in Banach Function Spaces and Representation Theorems in Banach-Sobolev Spaces
    Mamedov, E. M.
    Nasibova, N. P.
    Sezer, Y.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (02): : 189 - 204
  • [26] NUMERICAL RADIUS OF RANK-1 OPERATORS ON BANACH SPACES
    Chica, Mario
    Martin, Miguel
    Meri, Javier
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01): : 89 - 100
  • [27] SOME REMARKS ON FIXED POINT THEOREMS FOR NONLINEAR OPERATORS IN BANACH SPACES
    DEFIGUEIREDO, DG
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1967, 39 (3-4): : 345 - +
  • [28] Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces
    Takahashi, W
    Tamura, T
    JOURNAL OF APPROXIMATION THEORY, 1997, 91 (03) : 386 - 397
  • [29] Weak and Strong Convergence Theorems for Zeroes of Accretive Operators in Banach Spaces
    Song, Yanlai
    Ceng, Luchuan
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [30] Strong Convergence Theorems for Perturbed Maximal Monotone Operators in Banach Spaces
    王为民
    赵义纯
    东北数学, 1995, (01) : 75 - 78