SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1

被引:31
|
作者
Fung, Sin-Yee [1 ,2 ]
Siu, Kam-Leung [1 ,2 ]
Lin, Huayue [1 ,2 ]
Chan, Ching-Ping [1 ,2 ]
Yeung, Man Lung [2 ,3 ,4 ,5 ]
Jin, Dong-Yan [1 ,2 ]
机构
[1] Univ Hong Kong, Sch Biomed Sci, Pokfulam, 21 Sassoon Rd, Hong Kong, Peoples R China
[2] Hong Kong Sci & Technol Pk, Ctr Virol Vaccinol & Therapeut, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Microbiol, Pokfulam, 102 Pokfulam Rd, Hong Kong, Peoples R China
[4] Univ Hong Kong, State Key Lab Emerging Infect Dis, Pokfulam, Hong Kong, Peoples R China
[5] Univ Hong Kong, Shenzhen Hosp, Dept Clin Microbiol & Infect Control, Shenzhen, Peoples R China
来源
CELL AND BIOSCIENCE | 2022年 / 12卷 / 01期
关键词
SARS-CoV-2; COVID-19; NSP13; Helicase; JAK1; STAT1; ACUTE RESPIRATORY SYNDROME; PROTEIN; REPLICATION; APTAMERS; REVEALS; DISEASE;
D O I
10.1186/s13578-022-00770-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. Results In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-beta-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. Conclusion SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase
    Zhang, Chuang
    Yu, Junhui
    Deng, Mingzhenlong
    Zhang, Qingqing
    Jin, Fei
    Chen, Lei
    Li, Yan
    He, Bin
    MOLECULES, 2024, 29 (10):
  • [22] Potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13: a molecular docking and dynamic simulation study
    Vivek-Ananth, R. P.
    Krishnaswamy, Sankaran
    Samal, Areejit
    MOLECULAR DIVERSITY, 2022, 26 (01) : 429 - 442
  • [23] Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex
    James Chen
    Qi Wang
    Brandon Malone
    Eliza Llewellyn
    Yakov Pechersky
    Kashyap Maruthi
    Ed T. Eng
    Jason K. Perry
    Elizabeth A. Campbell
    David E. Shaw
    Seth A. Darst
    Nature Structural & Molecular Biology, 2022, 29 : 250 - 260
  • [24] Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13)
    Ugurel, Osman Mutluhan
    Mutlu, Ozal
    Sariyer, Emrah
    Kocer, Sinem
    Ugurel, Erennur
    Inci, Tugba Gul
    Ata, Oguz
    Turgut-Balik, Dilek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 163 : 1687 - 1696
  • [25] SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
    Yuen, Chun-Kit
    Lam, Joy-Yan
    Wong, Wan-Man
    Mak, Long-Fung
    Wang, Xiaohui
    Chu, Hin
    Cai, Jian-Piao
    Jin, Dong-Yan
    To, Kelvin Kai-Wang
    Chan, Jasper Fuk-Woo
    Yuen, Kwok-Yung
    Kok, Kin-Hang
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 1418 - 1428
  • [26] SADS-CoV nsp1 inhibits the STAT1 phosphorylation by promoting K11/K48-linked polyubiquitination of JAK1 and blocks the STAT1 acetylation by degrading CBP
    Xiang Y.
    Mou C.
    Zhu L.
    Wang Z.
    Shi K.
    Bao W.
    Li J.
    Chen X.
    Chen Z.
    Journal of Biological Chemistry, 300 (03):
  • [27] Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex
    Chen, James
    Wang, Qi
    Malone, Brandon
    Llewellyn, Eliza
    Pechersky, Yakov
    Maruthi, Kashyap
    Eng, Ed T.
    Perry, Jason K.
    Campbell, Elizabeth A.
    Shaw, David E.
    Darst, Seth A.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (03) : 250 - +
  • [28] Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication
    Corona, Angela
    Madia, Valentina Noemi
    De Santis, Riccardo
    Manelfi, Candida
    Emmolo, Roberta
    Ialongo, Davide
    Patacchini, Elisa
    Messore, Antonella
    Amatore, Donatella
    Faggioni, Giovanni
    Artico, Marco
    Iaconis, Daniela
    Talarico, Carmine
    Di Santo, Roberto
    Lista, Florigio
    Costi, Roberta
    Tramontano, Enzo
    ANTIVIRAL RESEARCH, 2023, 217
  • [29] In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors
    Gurung, Arun Bahadur
    GENE REPORTS, 2020, 21
  • [30] In silico Screening of Phytoconstituents with Antiviral Activities Against SARS-COV-2 Main Protease, Nsp12 Polymerase, and Nsp13 Helicase Proteins
    James, Jainey Puthenveettil
    Jyothi, Divya
    Priya, Sneh
    LETTERS IN DRUG DESIGN & DISCOVERY, 2021, 18 (08) : 841 - 857