AN INEXACT SEMISMOOTH NEWTON METHOD FOR VARIATIONAL INEQUALITY WITH SYMMETRIC CONE CONSTRAINTS

被引:2
|
作者
Chen, Shuang [1 ]
Pang, Li-Ping [1 ]
Li, Dan [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
[2] Dalian Univ, Informat & Engn Coll, Dalian 116622, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality; symmetric cone; Newton method; semismooth; Jordan algebra;
D O I
10.3934/jimo.2015.11.733
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider using the inexact nonsmooth Newton method to efficiently solve the symmetric cone constrained variational inequality (VISCC) problem. It red provides a unified framework for dealing with the variational inequality with nonlinear constraints, variational inequality with the second-order cone constraints, and the variational inequality with semidefinite cone constraints. We get convergence of the above method and apply the results to three special types symmetric cones.
引用
收藏
页码:733 / 746
页数:14
相关论文
共 50 条
  • [41] Inexact semismooth, newton methods for large-scale complementarity problems
    Kanzow, C
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (3-4): : 309 - 325
  • [42] A smoothing Newton method for symmetric cone complementarity problem
    Liu L.
    Liu S.
    Wu Y.
    J. Appl. Math. Comp., 1-2 (175-191): : 175 - 191
  • [43] A smoothing Newton method for symmetric cone complementarity problems
    Jia Tang
    Changfeng Ma
    Optimization Letters, 2015, 9 : 225 - 244
  • [44] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [45] A smoothing Newton method for symmetric cone complementarity problems
    Tang, Jia
    Ma, Changfeng
    OPTIMIZATION LETTERS, 2015, 9 (02) : 225 - 244
  • [46] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595
  • [47] Adaptive Inexact Semismooth Newton Methods for the Contact Problem Between Two Membranes
    Jad Dabaghi
    Vincent Martin
    Martin Vohralík
    Journal of Scientific Computing, 2020, 84
  • [48] Global Method for Monotone Variational Inequality Problems with Inequality Constraints
    J. M. Peng
    Journal of Optimization Theory and Applications, 1997, 95 : 419 - 430
  • [49] The differential equation method for variational inequality with constraints
    Wang, Li
    Wang, Shiyun
    ICIC Express Letters, 2015, 9 (10): : 2787 - 2794
  • [50] Global method for monotone variational inequality problems with inequality constraints
    Peng, JM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (02) : 419 - 430