Time series classification with Echo Memory Networks

被引:24
|
作者
Ma, Qianli [1 ]
Zhuang, Wanqing [1 ]
Shen, Lifeng [1 ]
Cottrell, Garrison W. [2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92103 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Echo state networks; Multi-scale convolution; Time series classification; STATE; FEATURES; SYSTEMS;
D O I
10.1016/j.neunet.2019.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Echo state networks (ESNs) are randomly connected recurrent neural networks (RNNs) that can be used as a temporal kernel for modeling time series data, and have been successfully applied on time series prediction tasks. Recently, ESNs have been applied to time series classification (TSC) tasks. However, previous ESN-based classifiers involve either training the model by predicting the next item of a sequence, or predicting the class label at each time step. The former is essentially a predictive model adapted from time series prediction work, rather than a model designed specifically for the classification task. The latter approach only considers local patterns at each time step and then averages over the classifications. Hence, rather than selecting the most discriminating sections of the time series, this approach will incorporate non-discriminative information into the classification, reducing accuracy. In this paper, we propose a novel end-to-end framework called the Echo Memory Network (EMN) in which the time series dynamics and multi-scale discriminative features are efficiently learned from an unrolled echo memory using multi-scale convolution and max-over-time pooling. First, the time series data are projected into the high dimensional nonlinear space of the reservoir and the echo states are collected into the echo memory matrix, followed by a single multi-scale convolutional layer to extract multi-scale features from the echo memory matrix. Max-over-time pooling is used to maintain temporal invariance and select the most important local patterns. Finally, a fully-connected hidden layer feeds into a softmax layer for classification. This architecture is applied to both time series classification and human action recognition datasets. For the human action recognition datasets, we divide the action data into five different components of the human body, and propose two spatial information fusion strategies to integrate the spatial information over them. With one training-free recurrent layer and only one layer of convolution, the EMN is a very efficient end-to-end model, and ranks first in overall classification ability on 55 TSC benchmark datasets and four 3D skeleton-based human action recognition tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 50 条
  • [41] Parameterizing echo state networks for multi-step time series prediction
    Viehweg, Johannes
    Worthmann, Karl
    Maeder, Patrick
    NEUROCOMPUTING, 2023, 522 : 214 - 228
  • [42] Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks
    Atencia, Miguel
    Stoean, Ruxandra
    Joya, Gonzalo
    MATHEMATICS, 2020, 8 (08)
  • [43] Echo state networks with double-reservoir for time-series prediction
    Liu, Chong
    Zhang, Huaguang
    Yao, Xianshuang
    Zhang, Kun
    2016 SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2016, : 196 - 202
  • [44] A systematic study of Echo State Networks topologies for chaotic time series prediction
    Viehweg, Johannes
    Teutsch, Philipp
    Maeder, Patrick
    NEUROCOMPUTING, 2025, 618
  • [45] EchoBay: Design and Optimization of Echo State Networks under Memory and Time Constraints
    Cerina, L.
    Santambrogio, M. D.
    Franco, G.
    Gallicchio, C.
    Micheli, A.
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2020, 17 (03)
  • [46] ARMemNet: Autoregressive Memory Networks for Multivariate Time Series Forecasting
    Park, Jinuk
    Park, Chanhee
    Roh, Hongchan
    Park, Sanghyun
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 1094 - 1097
  • [47] Random Projection Recurrent Neural Networks for Time Series Classification
    Ma, Ye
    Hu, Moufa
    Chang, Qing
    Lu, Huanzhang
    2018 8TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2018, : 40 - 43
  • [48] Fully convolutional networks with shapelet features for time series classification
    Ji, Cun
    Hu, Yupeng
    Liu, Shijun
    Pan, Li
    Li, Bo
    Zheng, Xiangwei
    INFORMATION SCIENCES, 2022, 612 : 835 - 847
  • [49] Mobile Networks Classification Based on Time-Series Clustering
    Lu, Shun
    Qian, Bing
    Zhao, Long-Gang
    Sun, Qiong
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 65 - 71
  • [50] Adversarial Attacks on Deep Neural Networks for Time Series Classification
    Fawaz, Hassan Ismail
    Forestier, Germain
    Weber, Jonathan
    Idoumghar, Lhassane
    Muller, Pierre-Alain
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,