ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI-SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE

被引:0
|
作者
Goupee, Andrew J. [1 ]
Fowler, Matthew J. [1 ]
Kimball, Richard W. [2 ]
Helder, Joop [3 ]
de Ridder, Erik-Jan [3 ]
机构
[1] Univ Maine, Orono, ME 04469 USA
[2] Maine Maritime Acad, Castine, ME USA
[3] MARIN, Wageningen, Netherlands
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In 2011 the DeepCwind Consortium, led by the University of Maine (UMaine), performed an extensive series of floating wind turbine model tests at the Maritime Research Institute Netherlands (MARIN) offshore basin. These tests, which were conducted at 1/50th scale, investigated the response of three floating wind turbine concepts subjected to simultaneous wind and wave environments. The wind turbine blades utilized for the tests were geometrically-similar models of those found on the National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine and performed poorly in the Froude-scaled, low-Reynolds number wind environment. As such, the primary aerodynamic load produced by the wind turbine, thrust, was drastically lower than expected for a given Froude-scaled wind speed. In order to obtain appropriate mean thrust forces for conducting the global performance testing of the floating wind turbines, the winds speeds were substantially raised beyond the target Froude-scale values. While this correction yielded the desired mean thrust load, the sensitivities of the thrust force due to changes in the turbine inflow wind speed, whether due to wind gusts or platform motion, were not necessarily representative of the full-scale system. In hopes of rectifying the wind turbine performance issue for Froude-scale wind/wave basin testing, efforts have been made by UMaine, Maine Maritime Academy and MARIN to design performance-matched wind turbines that produce the correct thrust forces when subjected to Froude-scale wind environments. In this paper, an improved, performance-matched wind turbine is mounted to the DeepCwind semi-submersible platform investigated in 2011 (also studied in the International Energy Association's OC4 Phase II Project) and retested in MARIN's offshore basin with two major objectives: 1) To demonstrate that the corrective wind speed adjustments made in the earlier DeepCwind tests produced realistic global performance behaviors and 2) To illustrate the increased capability for simulating full-scale floating wind turbine responses that a performance-matched turbine has over the earlier, geometrically-similar design tested. As an example of this last point, this paper presents select results for coupled wind/wave tests with active blade pitch control made possible with the use of a performance-matched wind turbine. The results of this paper show that the earlier DeepCwind tests produced meaningful data; however, this paper also illustrates the immense potential of using a performance-matched wind turbine in wind/wave basin model tests for floating wind turbines.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CALIBRATION OF HYDRODYNAMIC COEFFICIENTS FOR A SEMI-SUBMERSIBLE 10 MW WIND TURBINE
    Kvittem, Marit I.
    Berthelsen, Petter Andreas
    Eliassen, Lene
    Thys, Maxime
    PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 10, 2018,
  • [22] NEW SEMI-SUBMERSIBLE FLOATING WIND TURBINE FOR SOUTH CHINA SEA
    Li, RongFu
    Qi, Xiaoliang
    Gao, Wei
    Li, Hui
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,
  • [23] Fatigue strength assessment of semi-submersible floating wind turbine foundation under turbulent wind
    湍流风作用下半潜式浮式风力机基础疲劳强度评估
    Sang, Song (sangqi@ouc.edu.cn), 1600, Science Press (41): : 327 - 333
  • [24] Motion responses of a semi-submersible floating wind turbine in irregular waves
    Asghari, M.
    Fonseca, N.
    DEVELOPMENTS IN MARITIME TRANSPORTATION AND EXPLOITATION OF SEA RESOURCES, VOL 2, 2014, : 889 - 897
  • [25] SEQUENTIALLY COUPLED ANALYSIS FOR A SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE
    Raed, Karim
    Duncan, Dylan
    PROCEEDINGS OF ASME 2023 5TH INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, IOWTC2023, 2023,
  • [26] Passive Vibration Control of a Semi-Submersible Floating Offshore Wind Turbine
    Li, Chao
    Zhuang, Tongyi
    Zhou, Shengtao
    Xiao, Yiqing
    Hu, Gang
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [27] An experimental study on the influence of wind-wave-current coupling effect on the global performance of a 12 MW semi-submersible floating wind turbine
    Guo, Jianing
    Liu, Mingyue
    Fang, Zhichao
    Chen, Weimin
    Pan, Xujie
    Yang, Lijun
    OCEAN ENGINEERING, 2024, 304
  • [28] DYNAMIC RESPONSE ANALYSIS OF SEMI-SUBMERSIBLE FLOATING WIND TURBINE UNDER DIFFERENT WIND CONDITIONS
    Li C.
    Wang Y.
    Jiang M.
    Zhang L.
    Huang X.
    Yang T.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (04): : 85 - 91
  • [30] Dynamic performance of a semi-submersible platform subject to wind and waves
    Zhu H.
    Ou J.
    Journal of Ocean University of China, 2011, 10 (2) : 127 - 134