ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI-SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE

被引:0
|
作者
Goupee, Andrew J. [1 ]
Fowler, Matthew J. [1 ]
Kimball, Richard W. [2 ]
Helder, Joop [3 ]
de Ridder, Erik-Jan [3 ]
机构
[1] Univ Maine, Orono, ME 04469 USA
[2] Maine Maritime Acad, Castine, ME USA
[3] MARIN, Wageningen, Netherlands
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In 2011 the DeepCwind Consortium, led by the University of Maine (UMaine), performed an extensive series of floating wind turbine model tests at the Maritime Research Institute Netherlands (MARIN) offshore basin. These tests, which were conducted at 1/50th scale, investigated the response of three floating wind turbine concepts subjected to simultaneous wind and wave environments. The wind turbine blades utilized for the tests were geometrically-similar models of those found on the National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine and performed poorly in the Froude-scaled, low-Reynolds number wind environment. As such, the primary aerodynamic load produced by the wind turbine, thrust, was drastically lower than expected for a given Froude-scaled wind speed. In order to obtain appropriate mean thrust forces for conducting the global performance testing of the floating wind turbines, the winds speeds were substantially raised beyond the target Froude-scale values. While this correction yielded the desired mean thrust load, the sensitivities of the thrust force due to changes in the turbine inflow wind speed, whether due to wind gusts or platform motion, were not necessarily representative of the full-scale system. In hopes of rectifying the wind turbine performance issue for Froude-scale wind/wave basin testing, efforts have been made by UMaine, Maine Maritime Academy and MARIN to design performance-matched wind turbines that produce the correct thrust forces when subjected to Froude-scale wind environments. In this paper, an improved, performance-matched wind turbine is mounted to the DeepCwind semi-submersible platform investigated in 2011 (also studied in the International Energy Association's OC4 Phase II Project) and retested in MARIN's offshore basin with two major objectives: 1) To demonstrate that the corrective wind speed adjustments made in the earlier DeepCwind tests produced realistic global performance behaviors and 2) To illustrate the increased capability for simulating full-scale floating wind turbine responses that a performance-matched turbine has over the earlier, geometrically-similar design tested. As an example of this last point, this paper presents select results for coupled wind/wave tests with active blade pitch control made possible with the use of a performance-matched wind turbine. The results of this paper show that the earlier DeepCwind tests produced meaningful data; however, this paper also illustrates the immense potential of using a performance-matched wind turbine in wind/wave basin model tests for floating wind turbines.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] WIND/WAVE BASIN VERIFICATION OF A PERFORMANCE-MATCHED SCALE-MODEL WIND TURBINE ON A FLOATING OFFSHORE WIND TURBINE PLATFORM
    Kimball, Richard
    Goupee, Andrew J.
    Fowler, Matthew J.
    de Ridder, Erik-Jan
    Helder, Joop
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9B: OCEAN RENEWABLE ENERGY, 2014,
  • [2] Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data
    Coulling, Alexander J.
    Goupee, Andrew J.
    Robertson, Amy N.
    Jonkman, Jason M.
    Dagher, Habib J.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2013, 5 (02)
  • [3] Effects of wind load on hydrodynamic performance of an offshore wind turbine semi-submersible platform
    Xie, Jiarong
    Zhao, Chengbi
    Chen, Xiaoming
    Tang, Youhong
    Lin, Wei
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 114 - +
  • [4] Aerodynamic performance of semi-submersible floating wind turbine under pitch motion
    Shi, Weiyuan
    Jiang, Jin
    Sun, Ke
    Ju, Quanyong
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 48
  • [5] DESIGN AND GLOBAL PERFORMANCE OF A SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE SYSTEM
    Shi, Xiaohua
    Cheng, Yongming
    Shen, Yang
    Shou, Chunhui
    Chu, Zhuyu
    Lin, Gan
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 4, 2022,
  • [6] Rigid multibody dynamic modeling for a semi-submersible wind turbine
    Bagherian, Vahid
    Salehi, Mohammad
    Mahzoon, Mojtaba
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [7] Dynamic Response Analysis of Semi-Submersible Floating Wind Turbine with Different Wave Conditions
    Jiang M.
    Qiao G.
    Chen J.
    Huang X.
    Zhang L.
    Wen Y.
    Zhang Y.
    Energy Engineering: Journal of the Association of Energy Engineering, 2023, 120 (11): : 2517 - 2529
  • [8] Wind tunnel and wave flume testing on directionality dynamic responses of a 10 MW Y-shaped semi-submersible wind turbine
    Zheng, Shunyun
    Li, Chao
    Wang, Peicen
    Zhou, Shengtao
    Xiao, Yiqing
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (01)
  • [9] Hydrodynamic response of a semi-submersible platform to support a wind turbine
    Shokouhian, Mehdi
    Head, Monique
    Seo, Junwon
    Schaffer, William
    Adams, Gareth
    JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2021, 20 (03): : 170 - 185
  • [10] Experimental study on VIM of semi-submersible offshore wind turbine
    Wei D.
    Bai X.
    Huang W.
    Chang S.
    Chen J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (02): : 179 - 184