A miniature dilution refrigerator for sub-Kelvin detector arrays

被引:8
|
作者
Teleberg, Gustav [1 ]
Chase, Simon T. [2 ]
Piccirillo, Lucio [1 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, 5 Parade, Cardiff CF24 3YB, Wales
[2] Chase Res Cryogen Ltd, Sheffield S10 5DL, S Yorkshire, England
来源
MILLIMETER AND SUBMILLIMETER DETECTORS AND INSTRUMENTATION FOR ASTRONOMY III | 2006年 / 6275卷
关键词
dilution refrigerators; sorption coolers; astronomy instrumentation; cryogenics;
D O I
10.1117/12.671851
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a miniature dilution refrigerator (MDR), operated in continuous mode and suitable for many detector applications at temperatures down to 50 mK. It distinguishes itself from other refrigerators in that it is self-contained and benefits from an internal cycle of the 3 He gas. As a result, no external gas handling system is required so size, weight and complexity of the system is dramatically decreased. The system has no fine capillaries, moving parts or cooled O-rings. It is therefore mechanically very reliable, has no risk of blockages and is unlikely to develop cryogenic leaks. One direct application is balloon-borne or ground-based observations of the CMB using large detector arrays. When these experiments are operated remotely on platforms or at sites with limited infrastructure and maintenance support, a compact and reliable dilution refrigerator becomes essential. We describe a complete system incorporating an MDR which we have built and integrated with a pulse-tube refrigerator to achieve a cooling power of several micro Watt at 100 mK. This system is being developed for a CMB polarization experiment (CLOVER) which requires three independent cryostats to cool large TES detector arrays.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region
    Wang Chang
    Li Ke
    Shen Jun
    Dai Wei
    Wang Ya-Nan
    Luo Er-Cang
    Shen Bao-Gen
    Zhou Yuan
    ACTA PHYSICA SINICA, 2021, 70 (09)
  • [2] ANTIHYDROGEN AT SUB-KELVIN TEMPERATURES
    SHLYAPNIKOV, GV
    WALRAVEN, JTM
    SURKOV, EL
    HYPERFINE INTERACTIONS, 1993, 76 (1-4): : 31 - 46
  • [3] Thermal design issues and performance of microcalorimeter arrays at sub-Kelvin temperatures
    Ridder, ML
    Bruijn, MP
    Hoevers, HFC
    Germeau, A
    Baars, NHR
    Krouwer, E
    van Baar, JJ
    Wiegerink, RJ
    PROCEEDINGS OF THE IEEE SENSORS 2003, VOLS 1 AND 2, 2003, : 353 - 357
  • [4] SPECIAL DILUTION REFRIGERATOR SYSTEMS FOR MILLI-KELVIN DETECTOR EXPERIMENTS
    BATEY, G
    BALSHAW, N
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1993, 93 (3-4) : 773 - 777
  • [5] A sub-Kelvin superfluid pulse tube refrigerator driven by paramagnetic fountain effect pump
    Jahromi, Amir E.
    Miller, Franklin K.
    CRYOGENICS, 2014, 62 : 202 - 205
  • [6] Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER receiver
    Switzer, E. R.
    Ade, P. A. R.
    Baildon, T.
    Benford, D.
    Bennett, C. L.
    Chuss, D. T.
    Datta, R.
    Eimer, J. R.
    Fixsen, D. J.
    Gandilo, N. N.
    Essinger-Hileman, T. M.
    Halpern, M.
    Hilton, G.
    Irwin, K.
    Jhabvala, C.
    Kimball, M.
    Kogut, A.
    Lazear, J.
    Lowe, L. N.
    McMahon, J. J.
    Miller, T. M.
    Mirel, P.
    Moseley, S. H.
    Pawlyk, S.
    Rodriguez, S.
    Sharp, E.
    Shirron, P.
    Staguhn, J. G.
    Sullivan, D. F.
    Taraschi, P.
    Tucker, C. E.
    Walts, A.
    Wollack, E. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (09):
  • [7] Sub-Kelvin ac magnetic susceptometry
    Schmidt, M. A.
    Silevitch, D. M.
    Woo, N.
    Rosenbaum, T. F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (01):
  • [8] SPICA sub-Kelvin cryogenic chains
    Duband, L.
    Duval, J. M.
    Luchier, N.
    Prouve, T.
    CRYOGENICS, 2012, 52 (4-6) : 145 - 151
  • [9] Digital frequency multiplexing with sub-Kelvin SQUIDs
    Lowitz, Amy E.
    Bender, Amy N.
    Dobbs, Matthew A.
    Gilbert, Adam J.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708
  • [10] The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
    A. Suzuki
    P. A. R. Ade
    Y. Akiba
    D. Alonso
    K. Arnold
    J. Aumont
    C. Baccigalupi
    D. Barron
    S. Basak
    S. Beckman
    J. Borrill
    F. Boulanger
    M. Bucher
    E. Calabrese
    Y. Chinone
    S. Cho
    B. Crill
    A. Cukierman
    D. W. Curtis
    T. de Haan
    M. Dobbs
    A. Dominjon
    T. Dotani
    L. Duband
    A. Ducout
    J. Dunkley
    J. M. Duval
    T. Elleflot
    H. K. Eriksen
    J. Errard
    J. Fischer
    T. Fujino
    T. Funaki
    U. Fuskeland
    K. Ganga
    N. Goeckner-Wald
    J. Grain
    N. W. Halverson
    T. Hamada
    T. Hasebe
    M. Hasegawa
    K. Hattori
    M. Hattori
    L. Hayes
    M. Hazumi
    N. Hidehira
    C. A. Hill
    G. Hilton
    J. Hubmayr
    K. Ichiki
    Journal of Low Temperature Physics, 2018, 193 : 1048 - 1056