SPICA sub-Kelvin cryogenic chains

被引:13
|
作者
Duband, L. [1 ]
Duval, J. M. [1 ]
Luchier, N. [1 ]
Prouve, T. [2 ]
机构
[1] CEA, INAC, Serv Basses Temp, F-38054 Grenoble, France
[2] CALTECH, Pasadena, CA 91125 USA
关键词
Space cryogenics; Sorption cooler; Adiabatic demagnetization refrigerator; Heat switches; ADR;
D O I
10.1016/j.cryogenics.2012.01.030
中图分类号
O414.1 [热力学];
学科分类号
摘要
SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 mu m range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because the sorption cooler has extremely low mass for a sub-Kelvin cooler, it allows the stringent mass budget to be met. These concepts are discussed in this paper. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [1] ANTIHYDROGEN AT SUB-KELVIN TEMPERATURES
    SHLYAPNIKOV, GV
    WALRAVEN, JTM
    SURKOV, EL
    HYPERFINE INTERACTIONS, 1993, 76 (1-4): : 31 - 46
  • [2] Sub-Kelvin cooler configuration study for the Background Limited Infrared Submillimeter Spectrometer BLISS on SPICA
    Holmes, W.
    Bock, J. J.
    Bradford, C. Matt
    Chui, T. C. P.
    Koch, T. C.
    Lamborn, A. U.
    Moore, D.
    Paine, C. G.
    Thelen, M. P.
    Yazzie, A.
    CRYOGENICS, 2010, 50 (09) : 516 - 521
  • [3] Thermal conductance modeling and characterization of the SuperCDMS SNOLAB sub-Kelvin cryogenic system
    Dhuley, R. C.
    Hollister, M. I.
    Ruschman, M. K.
    Martin, L. D.
    Schmitt, R. L.
    Tatkowski, G. L.
    Bauer, D. A.
    Lukens, P. T.
    ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
  • [4] A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems
    B. Wilson
    M. Atlas
    P. Lowell
    S. Moyerman
    N. Stebor
    J. Ullom
    B. Keating
    Journal of Low Temperature Physics, 2014, 176 : 243 - 248
  • [5] A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems
    Wilson, B.
    Atlas, M.
    Lowell, P.
    Moyerman, S.
    Stebor, N.
    Ullom, J.
    Keating, B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 176 (3-4) : 243 - 248
  • [6] Superfluid-tight cryogenic receiver with continuous sub-Kelvin cooling for EXCLAIM
    Dahal, Sumit
    Ade, Peter A. R.
    Anderson, Christopher J.
    Barlis, Alyssa
    Barrentine, Emily M.
    Beeman, Jeffrey W.
    Bellis, Nicholas G.
    Bolatto, Alberto D.
    Braianova, Victoria
    Breysse, Patrick C.
    Bulcha, Berhanu T.
    Cataldo, Giuseppe
    Colazo, Felipe A.
    Chevres-Fernandez, Lee-Roger
    Cho, Chullhee
    Chmaytelli, Danny S.
    Connors, Jake A.
    Costen, Nicholas P.
    Cursey, Paul W.
    Ehsan, Negar
    Essinger-Hileman, Thomas M.
    Glenn, Jason
    Golec, Joseph E.
    Hays-Wehle, James P.
    Hess, Larry A.
    Jahromi, Amir E.
    Jenkins, Trevian
    Kimball, Mark O.
    Kogut, Alan J.
    Kramer, Samuel H.
    Leung, Nicole
    Lowe, Luke N.
    Mauskopf, Philip D.
    McMahon, Jeffrey J.
    Mikula, Vilem
    Mirzaei, Mona
    Moseley, Samuel H.
    Mugge-Durum, Jonas W.
    Nellis, Jacob
    Noroozian, Omid
    Okun, Kate
    Oxholm, Trevor
    Parekh, Tatsat
    Ue-Li Pen
    Pullen, Anthony R.
    Rahmani, Maryam
    Ramirez, Mathias M.
    Roberson, Cody
    Rodriguez, Samelys
    Roselli, Florian
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY XII, PT 1, 2024, 13102
  • [7] Sub-Kelvin ac magnetic susceptometry
    Schmidt, M. A.
    Silevitch, D. M.
    Woo, N.
    Rosenbaum, T. F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (01):
  • [8] An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors
    A. Phipps
    B. Sadoulet
    A. Juillard
    Y. Jin
    Journal of Low Temperature Physics, 2016, 184 : 505 - 511
  • [9] An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors
    Phipps, A.
    Sadoulet, B.
    Juillard, A.
    Jin, Y.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 505 - 511
  • [10] Digital frequency multiplexing with sub-Kelvin SQUIDs
    Lowitz, Amy E.
    Bender, Amy N.
    Dobbs, Matthew A.
    Gilbert, Adam J.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708