Application of the least-squares inversion method: Fourier series versus waveform inversion

被引:3
|
作者
Min, Dong-Joo [1 ]
Shin, Jungkyun [1 ]
Shin, Changsoo [1 ]
机构
[1] Seoul Natl Univ, Dept Energy Syst Engn, Seoul 08826, South Korea
关键词
Full waveform inversion; Fourier series; Least-squares inversion method; FREQUENCY-DOMAIN; FINITE-DIFFERENCE;
D O I
10.1016/j.jappgeo.2015.08.006
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the gradient, full-Newton, and Gauss-Newton methods similar to waveform inversion. (C) 2015 Published by Elsevier B.V.
引用
下载
收藏
页码:62 / 73
页数:12
相关论文
共 50 条
  • [21] APPLICATION OF THE LEAST-SQUARES METHOD
    ROSEN, S
    CHUNG, AM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1956, 46 (03) : 223 - 226
  • [22] NUMERICAL INVERSION OF LAPLACE TRANSFORMS BY WEIGHTED LEAST-SQUARES APPROXIMATION
    ZAKIAN, V
    LITTLEWOOD, RK
    COMPUTER JOURNAL, 1973, 16 (01): : 66 - 68
  • [23] A NEW NONLINEAR LEAST-SQUARES ALGORITHM FOR THE SEISMIC INVERSION PROBLEM
    WRIGHT, SJ
    HOLT, JN
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1986, 87 (03): : 1041 - 1056
  • [24] COMPARISON OF 5 LEAST-SQUARES INVERSION TECHNIQUES IN RESISTIVITY SOUNDING
    HOVERSTEN, GM
    DEY, A
    MORRISON, HF
    GEOPHYSICAL PROSPECTING, 1982, 30 (05) : 688 - 715
  • [25] Aspects of chaotic dynamics in the least-squares inversion of gravity data
    Cooper, GRJ
    COMPUTERS & GRAPHICS-UK, 2001, 25 (04): : 691 - 697
  • [26] Shot-domain deblending using least-squares inversion
    Zu, Shaohuan
    Zhou, Hui
    Li, Qingqing
    Chen, Hanming
    Zhang, Qingchen
    Mao, Weijian
    Chen, Yangkang
    GEOPHYSICS, 2017, 82 (04) : V241 - V256
  • [27] Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method
    Loke, MH
    Barker, RD
    GEOPHYSICAL PROSPECTING, 1996, 44 (01) : 131 - 152
  • [28] DETERMINATION OF ROCK FRICTION CONSTITUTIVE PARAMETERS USING AN ITERATIVE LEAST-SQUARES INVERSION METHOD
    REINEN, LA
    WEEKS, JD
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1993, 98 (B9) : 15937 - 15950
  • [29] 2-PARAMETER LEAST-SQUARES ANALYSIS OF INVERSION-RECOVERY FOURIER-TRANSFORM EXPERIMENTS
    HANSSUM, H
    RUTERJANS, H
    JOURNAL OF MAGNETIC RESONANCE, 1980, 39 (01) : 65 - 78
  • [30] NOTE ON APPLICATION OF METHOD OF LEAST-SQUARES
    GRABE, M
    METROLOGIA, 1978, 14 (04) : 143 - 146