Improved Multi-domain Convolutional Neural Networks Method for Vehicle Tracking

被引:0
|
作者
Wang, Jianwen [1 ]
Li, Aimin [1 ]
Pang, Y. [1 ]
机构
[1] Qilu Univ Technol, Comp Sci & Technol, Shandong Acad Sci, Jinan 250300, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Intelligent transportation; MDNet; object tracking; instance segmentation; attention module; OBJECT TRACKING;
D O I
10.1142/S0218213020400229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of intelligent transportation, background complexity, lighting changes, occlusion, and scale transformation affect the tracking results of moving vehicles in the video. We propose an improved vehicle object tracking algorithm based on Multi-Domain Convolutional Neural Networks (MDNet), combining the instance segmentation method with the MDNet algorithm, adding two attention mechanisms to the algorithm. The module extracts better features, ensures that the vehicle object adapts to changes in appearance, and greatly improves tracking performance. Our improved algorithm has a tracking precision rate of 91.8% and a success rate of 67.8%. The Vehicle Tracking algorithm is evaluated on the Object Tracking Benchmark (OTB) data set. The tracking results are compared with eight mainstream object tracking algorithms, and the results show that our improved algorithm has excellent performance. The object tracking precision rate and tracking success rate of this algorithm have achieved excellent results in many cases.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Domain adaption of vehicle detector based on convolutional neural networks
    Xudong Li
    Mao Ye
    Min Fu
    Pei Xu
    Tao Li
    International Journal of Control, Automation and Systems, 2015, 13 : 1020 - 1031
  • [22] MDTD: A Multi-Domain Trojan Detector for Deep Neural Networks
    Rajabi, Arezoo
    Asokraj, Surudhi
    Jiang, Fengqing
    Niu, Luyao
    Ramasubramanian, Bhaskar
    Ritcey, James
    Poovendran, Radha
    PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023, 2023, : 2232 - 2246
  • [23] Learning Multi-Domain Adversarial Neural Networks for Text Classification
    Ding, Xiao
    Shi, Qiankun
    Cai, Bibo
    Liu, Ting
    Zhao, Yanyan
    Ye, Qiang
    IEEE ACCESS, 2019, 7 : 40323 - 40332
  • [24] MDTD: A Multi-Domain Trojan Detector for Deep Neural Networks
    Rajabi, Arezoo
    Niu, Luyao
    Asokraj, Surudhi
    Ramasubramanian, Bhaskar
    Poovendran, Radha
    Jiang, Fengqing
    Ritcey, James
    CCS 2023 - Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023, : 2232 - 2246
  • [25] MDTD: A Multi-Domain Trojan Detector for Deep Neural Networks
    Rajabi, Arezoo
    Asokraj, Surudhi
    Jiang, Fengqing
    Niu, Luyao
    Ramasubramanian, Bhaskar
    Ritcey, Jim
    Poovendran, Radha
    arXiv, 2023,
  • [26] Automatic Schizophrenia Identification Using Multi-Domain Features With Convolutional Neural Network
    Cai, Xiyu
    Pan, Huang
    Liu, Xiaobo
    Lai, Yongxiu
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S129 - S130
  • [27] Authentication and authorization method in multi-domain, multi-provider networks
    Polito, Silvana Greco
    Schulzrinne, Henning
    2007 NEXT GENERATION INTERNET NETWORKS, 2007, : 174 - +
  • [28] Multi-domain gate and interactive dual attention for multi-domain dialogue state tracking
    Jia, Xu
    Zhang, Ruochen
    Peng, Min
    KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [29] Multi-domain gate and interactive dual attention for multi-domain dialogue state tracking
    Jia, Xu
    Zhang, Ruochen
    Peng, Min
    Knowledge-Based Systems, 2024, 286
  • [30] MULTI-TARGET TRACKING WITH TRANSFERABLE CONVOLUTIONAL NEURAL NETWORKS
    Owerko, Damian
    Kanatsoulis, Charilaos I.
    Bondarchuk, Jennifer
    Bucci, Donald J., Jr.
    Ribeiro, Alejandro
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 56 - 60