Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors

被引:51
|
作者
Bimonte, Giuseppe [1 ,2 ]
机构
[1] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
关键词
Casimir effect; electrical conductivity; electromagnetic fields; fluctuations; QUANTUM ELECTRODYNAMICS; FORCE; CONSTRAINTS; DIELECTRICS;
D O I
10.1103/PhysRevA.79.042107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The problem of estimating the thermal corrections to the Casimir and Casimir-Polder interactions in systems involving conducting plates has attracted considerable attention in the recent literature on dispersion forces. Alternative theoretical models, based on distinct low-frequency extrapolations of the plate's reflection coefficient for transverse electric (TE) modes, provide widely different predictions for the magnitude of this correction. In this paper we examine the most widely used prescriptions for this reflection coefficient from the point of view of their consistency with the Bohr-van Leeuwen theorem of classical statistical physics, stating that at thermal equilibrium transverse electromagnetic fields decouple from matter in the classical limit. We find that the theorem is satisfied if and only if the TE reflection coefficient vanishes at zero frequency in the classical limit. This criterion appears to rule out some of the models that have been considered recently for describing the thermal correction to the Casimir pressure with nonmagnetic metallic plates.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] ELECTROMAGNETIC-WAVES NEAR PERFECT CONDUCTORS .2. CASIMIR EFFECT
    BALIAN, R
    DUPLANTIER, B
    ANNALS OF PHYSICS, 1978, 112 (01) : 165 - 208
  • [32] DE-HAAS-VAN-ALPHEN EFFECT IN THIN CONDUCTORS
    PESHANSKII, VG
    AVADALLA, MS
    SINOLITSKII, VV
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1973, 60 (01): : K37 - K40
  • [33] Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces
    Rode, Stefan
    Bennett, Robert
    Buhmann, Stefan Yoshi
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [34] Violation of the Nernst heat theorem in the theory of the thermal Casimir force between Drude metals
    Bezerra, VB
    Klimchitskaya, GL
    Mostepanenko, VM
    Romero, C
    PHYSICAL REVIEW A, 2004, 69 (02) : 9
  • [35] Thermal Casimir effect between random layered dielectrics
    Dean, David S.
    Horgan, R. R.
    Naji, Ali
    Podgornik, R.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [36] Thermal Casimir effect in ideal metal rectangular boxes
    B. Geyer
    G. L. Klimchitskaya
    V. M. Mostepanenko
    The European Physical Journal C, 2008, 57 : 823 - 834
  • [37] Thermal Casimir Effect in the Plane-Sphere Geometry
    Canaguier-Durand, Antoine
    Maia Neto, Paulo A.
    Lambrecht, Astrid
    Reynaud, Serge
    PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [38] Thermal Casimir effect in Kerr space-time
    Zhang, Anwei
    NUCLEAR PHYSICS B, 2015, 898 : 220 - 228
  • [39] Topological thermal Casimir effect for spinor and electromagnetic fields
    Mota, H. F.
    Bezerra, V. B.
    PHYSICAL REVIEW D, 2015, 92 (12)
  • [40] Identity of the van der Waals force and the Casimir effect and the irrelevance of these phenomena to sonoluminescence
    Brevik, V
    Marachevsky, VN
    Milton, KA
    PHYSICAL REVIEW LETTERS, 1999, 82 (20) : 3948 - 3951