Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries

被引:103
|
作者
Zhang, Jianhang [1 ,2 ]
Liu, Gang [1 ,2 ]
Hu, Hechen [5 ]
Wu, Liyuan [3 ]
Wang, Qian [3 ]
Xin, Xiangjun [1 ,2 ]
Li, Shanjun [4 ]
Lu, Pengfei [3 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing Key Lab Space Ground Interconnect & Conve, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Sichuan Univ, Coll Elect Engn & Informat Technol, Chengdu 610065, Sichuan, Peoples R China
[5] Beijing Univ Posts & Telecommun, Sch Optoelect Informat, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene-like material; Carbon-nitrogen anode material; Nitrogen-doped graphene; Anode material; Li-ion batteries; Mg-ion batteries; HIGH-CAPACITY ANODE; SODIUM-ION; DEFECTIVE GRAPHENE; RECENT PROGRESS; 2D MATERIAL; AB-INITIO; LITHIUM; NANOSHEETS; NA; DIFFUSION;
D O I
10.1016/j.apsusc.2019.05.155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional materials have been considered to be promising potential electrodes of metal-ion batteries. Here we explored the application of three graphene-like carbon-nitrogen structures as anode materials in lithium (Li)-ion and magnesium (Mg)-ion Batteries. We first studied the intrinsic characteristic of C2N, C3N, and g-C3N4, explored possible adsorption positions in each structure, studied the diffusion path, energy barrier, voltage profile, and theoretical capacity. Our results show that the theoretical capacities of C2N anode is 671.7 mAhg(-1) for Li-ions and 588.4 mAhg(-1) for Mg-ions, which makes it a promising anode material. C3N is not suitable as anode material. Because of the few absorptions sites, the capacity of g-C3N4 sheet is only 199.5 mAhg(-1) for Li-ions and 319.2 mAhg(-1) for Mg-ions, which makes it unsuitable as anode material but its performance can be much improved when curled into nanotubes. Using Mg-ions instead of Li-ions can reduce the deformation of the material (for C2N) at the maximum concentration or improve the theoretical capacity (for C3N4), lowing the maximum open circuit voltage while improving the diffusion energy barrier.
引用
收藏
页码:1026 / 1032
页数:7
相关论文
共 50 条
  • [21] Graphene and graphene/binary transition metal oxide composites as anode materials in Li-ion batteries
    Marka, Sandeep K.
    Srikanth, Vadali V.S.S.
    Nanoscience and Nanotechnology - Asia, 2015, 5 (02): : 90 - 108
  • [22] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):
  • [23] 3D graphene-based anode materials for Li-ion batteries
    Wang, Huan
    Li, Xu
    Baker-Fales, Montgomery
    Amama, Placidus B.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 : 124 - 132
  • [24] Synthesis of MoS2 and Graphene Composites as the Anode Materials for Li-Ion Batteries
    Wang, Juan
    Tian, Jianhua
    Naren
    Wang, Xiaxia
    Qin, Zhenwu
    Shan, Zhongqiang
    ENERGY TECHNOLOGY, 2018, 6 (10) : 1913 - 1920
  • [25] Constructing Janus SnSSe and graphene heterostructures as promising anode materials for Li-ion batteries
    Zhang, Wenxue
    Zhang, Jiahui
    He, Cheng
    Li, Tongtong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (01) : 267 - 277
  • [26] NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries
    Zou, Yuqin
    Wang, Yong
    NANOSCALE, 2011, 3 (06) : 2615 - 2620
  • [27] Al-based anode materials for Li-ion batteries
    Lindsay, MJ
    Wang, GX
    Liu, HK
    JOURNAL OF POWER SOURCES, 2003, 119 : 84 - 87
  • [28] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Ying-jie Zhang
    Hua Chu
    Li-wen Zhao
    Long-fei Yuan
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 6657 - 6663
  • [29] Tin-based composite materials as anode materials for Li-ion batteries
    Ahn, JH
    Wang, GX
    Yao, J
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2003, 119 : 45 - 49
  • [30] A concise review on the advancement of anode materials for Li-ion batteries
    Saritha, D.
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 726 - 730