VERIFICATION ESTIMATES FOR THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING MESHFREE COLLOCATION

被引:3
|
作者
Giesl, Peter [1 ]
Mohammed, Najla [2 ]
机构
[1] Univ Sussex, Dept Math, Falmer BN1 9QH, England
[2] Umm Al Qura Univ, Dept Math Sci, Mecca, Saudi Arabia
来源
关键词
Meshfree collocation; Lyapunov functions; error estimates;
D O I
10.3934/dcdsb.2019040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov functions are functions with negative derivative along solutions of a given ordinary differential equation. Moreover, sub-level sets of a Lyapunov function are subsets of the domain of attraction of the equilibrium. One of the numerical construction methods for Lyapunov functions uses mesh-free collocation with radial basis functions (RBF). In this paper, we propose two verification estimates combined with this RBF construction method to ensure that the constructed function is a Lyapunov function. We show that this combination of the RBF construction method and the verification estimates always succeeds in constructing and verifying a Lyapunov function for nonlinear ODEs in R-d with an exponentially stable equilibrium.
引用
收藏
页码:4955 / 4981
页数:27
相关论文
共 50 条
  • [21] CONSTRUCTION OF A FINITE-TIME LYAPUNOV FUNCTION BY MESHLESS COLLOCATION
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2387 - 2412
  • [22] Convergence order estimates of meshless collocation methods using radial basis functions
    Franke, C
    Schaback, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (04) : 381 - 399
  • [23] Convergence order estimates of meshless collocation methods using radial basis functions
    Carsten Franke
    Robert Schaback
    Advances in Computational Mathematics, 1998, 8 : 381 - 399
  • [24] Triangulations and Error Estimates for Interpolating Lyapunov Functions
    Giesl P.
    Hafstein S.
    SN Computer Science, 4 (4)
  • [25] Attraction Domain estimates combining Lyapunov Functions
    Materassi, Donatello
    Salapaka, Murti V.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 4007 - 4012
  • [26] Computation of a Contraction Metric for a Periodic Orbit Using Meshfree Collocation
    Giesl, Peter
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03): : 1536 - 1564
  • [27] On the construction of Lyapunov functions for nonlinear systems
    Aleksandrov, AY
    DIFFERENTIAL EQUATIONS, 2005, 41 (03) : 303 - 309
  • [28] On the construction of piecewise linear Lyapunov functions
    Ohta, Y
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2173 - 2178
  • [29] On the construction of Lyapunov functions. I
    Propoi, AI
    AUTOMATION AND REMOTE CONTROL, 2000, 61 (05) : 742 - 748
  • [30] On numerical construction of homogeneous Lyapunov functions
    Efimov, D.
    Ushirobira, R.
    Moreno, J. A.
    Perruquetti, W.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,