A short proof of an interesting Helly-type theorem

被引:11
|
作者
Amenta, N
机构
[1] Geometry Center, Minneapolis, MN 55454
关键词
D O I
10.1007/BF02711517
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a shortproof of the theorem that any family of subsets of R(d), With the property that the intersection of any nonempty finite subfamily can be represented as the disjoint union of at most k closed convex sets, has Helly number at most k(d + 1).
引用
下载
收藏
页码:423 / 427
页数:5
相关论文
共 50 条
  • [41] Discrete Helly-type theorems for pseudohalfplanes
    Keszegh, Balazs
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [42] On a Helly-type question for central symmetry
    Alexey Garber
    Edgardo Roldán-Pensado
    Periodica Mathematica Hungarica, 2019, 79 : 78 - 85
  • [43] Helly-Type Theorems for Approximate Covering
    Julien Demouth
    Olivier Devillers
    Marc Glisse
    Xavier Goaoc
    Discrete & Computational Geometry, 2009, 42 : 379 - 398
  • [44] A MELANGE OF DIAMETER HELLY-TYPE THEOREMS
    Dillon, Travis
    Soberon, Pablo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1615 - 1627
  • [45] STARSHAPED SETS AND HELLY-TYPE THEOREMS
    BAILDON, JD
    SILVERMAN, R
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 62 (01) : 37 - 41
  • [46] CONTINUOUS QUANTITATIVE HELLY-TYPE RESULTS
    Fernandez Vidal, Tomas
    Galicer, Daniel
    Merzbacher, Mariano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2181 - 2193
  • [47] Discrete and lexicographic helly-type theorems
    Halman, Nir
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (04) : 690 - 719
  • [48] On a Helly-type question for central symmetry
    Garber, Alexey
    Roldan-Pensado, Edgardo
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (01) : 78 - 85
  • [49] Helly-Type Theorems for Approximate Covering
    Demouth, Julien
    Devillers, Olivier
    Glisse, Marc
    Goaoc, Xavier
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (03) : 379 - 398
  • [50] Discrete and Lexicographic Helly-Type Theorems
    Nir Halman
    Discrete & Computational Geometry, 2008, 39 : 690 - 719