Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at -2, +4, or +8 degrees C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. The decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.
机构:
Andra Res & Dev Div, 1-7 Rue Jean Monnet, F-92298 Chatenay Malabry, FranceKatholieke Univ Leuven, Dept Earth & Environm Sci, Kasteelpk Arenberg 20 Bus 2459, B-3001 Leuven, Belgium
机构:
Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
Gagne, Kristin R.
Ewers, Sara C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
Ewers, Sara C.
Murphy, Carl J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
Murphy, Carl J.
Daanen, Ronald
论文数: 0引用数: 0
h-index: 0
机构:
Alaska Dept Nat Resources, Div Geol & Geophys Surveys, Fairbanks, AK 99709 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
Daanen, Ronald
Anthony, Katey Walter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alaska Fairbanks, Water & Environm Res Ctr, Fairbanks, AK 99775 USA
Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK 99775 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
Anthony, Katey Walter
Guerard, Jennifer J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USAUniv Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
机构:
Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA
Weintraub, MN
Schimel, JP
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA