A new lower bound on the independence number of a graph and applications

被引:0
|
作者
Henning, Michael A. [1 ]
Loewenstein, Christian [2 ]
Southey, Justin [1 ]
Yeo, Anders [1 ,3 ]
机构
[1] Univ Johannesburg, Dept Math, Auckland Pk, ZA-2006 Johannesburg, South Africa
[2] Univ Ulm, Inst Optimizat & Operat Res, D-89081 Ulm, Germany
[3] Singapore Univ Technol & Design, Singapore 138682, Singapore
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
基金
新加坡国家研究基金会;
关键词
independence; clique; transversal; SMALL TRANSVERSALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The independence number of a graph C, denoted a(G), is the maximum cardinality of an independent set of vertices in G. The independence number is one of the most fundamental and well-studied graph parameters. In this paper, we strengthen a result of Fajtlowicz [Combinatorica 4 (1984), 35-38] on the independence of a graph given its maximum degree and maximum clique size. As a consequence of our result we give bounds on the independence number and transversal number of 6-uniform hypergraphs with maximum degree three. This gives support for a conjecture due to Tuza and Vestergaard [Discussiones Math. Graph Theory 22 (2002), 199-210] that if H is a 3-regular 6-uniform hypergraph of order n, then T (H) <= n/4.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] An improved lower bound for the nullity of a graph in terms of matching number
    Ma, Xiaobin
    Fang, Xianwen
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (10): : 1983 - 1989
  • [42] THE SHARP LOWER BOUND FOR THE SPECTRAL RADIUS OF CONNECTED GRAPHS WITH THE INDEPENDENCE NUMBER
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 419 - 431
  • [43] A lower bound for the complex flow number of a graph: A geometric approach
    Mattiolo, Davide
    Mazzuoccolo, Giuseppe
    Rajnik, Jozef
    Tabarelli, Gloria
    JOURNAL OF GRAPH THEORY, 2024, 106 (02) : 239 - 256
  • [44] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 752 - 760
  • [45] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Yi-Zheng FAN
    Ying-Ying TAN
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 752 - 760
  • [46] New approach to the k-independence number of a graph
    Caro, Yair
    Hansberg, Adriana
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [47] A generalization of the Hoffman-Lovasz upper bound on the independence number of a regular graph
    Luz, CJ
    Cardoso, DM
    ANNALS OF OPERATIONS RESEARCH, 1998, 81 : 307 - 319
  • [48] A new lower bound for the irredundance number of a tree
    Pricke, Gerd
    O'Brien, Timothy J.
    Christopher Schroeder, W.
    Hedetniemi, Stephen T.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2013, 85 : 345 - 352
  • [49] A NEW LOWER BOUND FOR THE NUMBER OF CONJUGACY CLASSES
    Cinarci, Burcu
    Keller, Thomas michael
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3757 - 3764
  • [50] INDEPENDENCE NUMBER OF A PLANAR GRAPH
    ALBERTSO.MO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04): : A424 - A424