A new lower bound on the independence number of a graph and applications

被引:0
|
作者
Henning, Michael A. [1 ]
Loewenstein, Christian [2 ]
Southey, Justin [1 ]
Yeo, Anders [1 ,3 ]
机构
[1] Univ Johannesburg, Dept Math, Auckland Pk, ZA-2006 Johannesburg, South Africa
[2] Univ Ulm, Inst Optimizat & Operat Res, D-89081 Ulm, Germany
[3] Singapore Univ Technol & Design, Singapore 138682, Singapore
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
基金
新加坡国家研究基金会;
关键词
independence; clique; transversal; SMALL TRANSVERSALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The independence number of a graph C, denoted a(G), is the maximum cardinality of an independent set of vertices in G. The independence number is one of the most fundamental and well-studied graph parameters. In this paper, we strengthen a result of Fajtlowicz [Combinatorica 4 (1984), 35-38] on the independence of a graph given its maximum degree and maximum clique size. As a consequence of our result we give bounds on the independence number and transversal number of 6-uniform hypergraphs with maximum degree three. This gives support for a conjecture due to Tuza and Vestergaard [Discussiones Math. Graph Theory 22 (2002), 199-210] that if H is a 3-regular 6-uniform hypergraph of order n, then T (H) <= n/4.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A lower bound on the independence number of a graph
    Harant, J
    DISCRETE MATHEMATICS, 1998, 188 (1-3) : 239 - 243
  • [2] An improved lower bound on the independence number of a graph
    Henning, Michael A.
    Loewenstein, Christian
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 120 - 128
  • [3] LOWER BOUND FOR INDEPENDENCE NUMBER OF A PLANAR GRAPH
    ALBERTSON, MO
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (01) : 84 - 93
  • [4] A new lower bound on the independence number of graphs
    Angel, Eric
    Campigotto, Romain
    Laforest, Christian
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) : 847 - 852
  • [5] A new lower bound on the domination number of a graph
    Majid Hajian
    Michael A. Henning
    Nader Jafari Rad
    Journal of Combinatorial Optimization, 2019, 38 : 721 - 738
  • [6] A new lower bound on the domination number of a graph
    Hajian, Majid
    Henning, Michael A.
    Rad, Nader Jafari
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 721 - 738
  • [7] The lower bound on independence number
    李雨生
    CecilC.ROUSSEAU
    臧文安
    Science China Mathematics, 2002, (01) : 64 - 69
  • [8] The lower bound on independence number
    Yusheng Li
    Cecil C. Rousseau
    Wen’an Zang
    Science in China Series A: Mathematics, 2002, 45 (1): : 64 - 69
  • [9] Lower bound on independence number
    Li, Yusheng
    Rousseau, Cecil C.
    Zang, Wen'an
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (01):
  • [10] The lower bound on independence number
    Li, YS
    Rousseau, CC
    Zang, W
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (01): : 64 - 69