Cu dopant triggering remarkable enhancement in activity and durability of Fe-N-C electrocatalysts toward oxygen reduction

被引:19
|
作者
Chen, Xiang-Lan [1 ]
Zhu, Hai-Bin [1 ]
Ding, Lin-Fei [2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Peoples R China
[2] Nanjing Forestry Univ, Adv Anal & Testing Ctr, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Bimetal Cu; Fe-codoped; ZIF-8; Oxygen reduction; Zinc-air battery; NITROGEN-DOPED CARBON; HIGHLY EFFICIENT; CATALYST; PERFORMANCE; SITES; PROGRESS;
D O I
10.1016/j.jelechem.2020.114389
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Doping of a second metal has been becoming a valid strategy to further improve the catalytic performance of Fe-N-C catalysts toward oxygen reduction reaction (ORR). A highly efficient Cu-Fe-N-C electrocatalyst for oxygen reduction has been prepared by pyrolyzing the precursor of Cu(OH)(2)-Fe(OH)(3)@ZIF-8 (ZIF = zeolitic imidazolate framework) followed by acid treatment. The impact of Cu dopant on the Cu-Fe-N-C electrocatalysts have been fully investigated through various techniques, demonstrating that the Cu/Fe molar ratio in the feedstock (CuCl2/FeCl3) significantly influences the resultant Cu-Fe-N-C catalysts in terms of the morphologies, carbon texture (e.g. surface area, pore structure) as well as the distribution of different types of doped N atoms, which clearly determine the ORR performance (activity and durability) of the Cu-Fe-N-C catalysts. The best-performance Cu-Fe-N-C-1-900-AT exhibits a higher half-wave potential (E-1/2) of 0.88 V (vs. RHE) (30 mV higher than the commercial Pt/C) in alkaline electrolyte, and a half-wave potential of 0.79 V (vs. RHE) comparable to Pt/C in acidic electrolyte. Moreover, an enhanced durability in both alkaline (Delta E-1/2 = 5 mV after 10,000 cycles) and acidic media (Delta E-1/2 = 20 mV after 10,000 cycles) is also observed with Cu-Fe-N-C-1-900-AT compared to Fe-N-C-900 and Cu-N-C-900. The zinc-air battery based on Cu-Fe-N-C-1-900-AT as cathode catalyst exhibits a peak power density of 140 mW cm(-2) superior to the reference Pt/C catalyst (74 mW cm(-2)), and an impressive durability with only ca. 4.3% decay in the output voltage for 50 h at 20 mA cm(-2).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Recent progress in the durability of Fe-N-C oxygen reduction electrocatalysts for polymer electrolyte fuel cells
    Weiss, John
    Zhang, Hanguang
    Zelenay, Piotr
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 875
  • [2] Spin State as a Participator for Demetalation Durability and Activity of Fe-N-C Electrocatalysts
    Sun, Fang
    Li, Fuhua
    Tang, Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (31): : 13168 - 13181
  • [3] Iron redox behavior and oxygen reduction activity of Fe-N-C electrocatalysts in different electrolytes
    Wang, Xiaoping
    Ferrandon, Magali
    Park, Jae Hyung
    Shen, Jing-Jing
    Kropf, A. Jeremy
    Zhang, Hanguang
    Zelenay, Piotr
    Myers, Deborah J.
    ELECTROCHIMICA ACTA, 2023, 443
  • [4] Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe-N-C electrocatalysts
    Li, Sirui
    Kort-Kamp, Wilton J. M.
    Zelenay, Piotr
    Holby, Edward F.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 48
  • [5] Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction
    Li, Jingkun
    Ghoshal, Shraboni
    Liang, Wentao
    Sougrati, Moulay-Tahar
    Jaouen, Frederic
    Halevi, Barr
    McKinney, Samuel
    McCool, Geoff
    Ma, Chunrong
    Yuan, Xianxia
    Ma, Zi-Feng
    Mukerjee, Sanjeev
    Jia, Qingying
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) : 2418 - 2432
  • [6] Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx
    Jiang, Wen-Jie
    Gu, Lin
    Li, Li
    Zhang, Yun
    Zhang, Xing
    Zhang, Lin-Juan
    Wang, Jian-Qiang
    Hu, Jin-Song
    Wei, Zidong
    Wan, Li-Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (10) : 3570 - 3578
  • [7] Tailoring the microenvironment in Fe-N-C electrocatalysts for optimal oxygen reduction reaction performance
    Wang, Qing
    Lu, Ruihu
    Yang, Yuqi
    Li, Xuanze
    Chen, Guangbo
    Shang, Lu
    Peng, Lishan
    Sun-Waterhouse, Dongxiao
    Cowie, Bruce C. C.
    Meng, Xiangmin
    Zhao, Yan
    Zhang, Tierui
    Waterhouse, Geoffrey I. N.
    SCIENCE BULLETIN, 2022, 67 (12) : 1264 - 1273
  • [8] Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction
    Li, Jin-Cheng
    Zhong, Hong
    Xu, Mingjie
    Li, Tao
    Wang, Liguang
    Shi, Qiurong
    Peng, Shuo
    Lyu, Zhaoyuan
    Liu, Dong
    Du, Dan
    Beckman, Scott P.
    Pan, Xiaoqing
    Lin, Yuehe
    Shao, Minhua
    SCIENCE CHINA-MATERIALS, 2020, 63 (06) : 965 - 971
  • [9] Enhancing oxygen reduction reaction activity of pyrolyzed Fe-N-C catalyst by the inclusion of BN dopant at the graphitic edges
    Nuruddin, Ahmad
    Saputro, Adhitya Gandaryus
    Maulana, Arifin Luthfi
    Fajrial, Apresio Kefin
    Shukri, Ganes
    Mahyuddin, Muhammad Haris
    Aprilyanti, Fine Dwinita
    Harimawan, Ardiyan
    Dipojono, Hermawan Kresno
    APPLIED SURFACE SCIENCE, 2023, 608
  • [10] Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction
    Wang, Feiteng
    Zhou, Yipeng
    Lin, Sen
    Yang, Lijun
    Hu, Zheng
    Xie, Daiqian
    NANO ENERGY, 2020, 78