generalized Pareto distribution;
hydrological data set;
maximum likelihood;
parametric estimation;
peaks over threshold;
Pickands coordinates;
D O I:
10.1111/j.1467-9469.2008.00619.x
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Modelling the tails of a multivariate distribution can be reasonably done by multivariate generalized Pareto distributions (GPDs). We present several methods of parametric estimation in these models, which use decompositions of the corresponding random vectors with the help of different versions of Pickands coordinates. The estimators are compared to each other with simulated data sets. To show the practical value of the methods, they are applied to a real hydrological data set.
机构:
Univ Rennes, CNRS, IRMAR, UMR 6625, Rennes, France
Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, FranceUniv Rennes, CNRS, IRMAR, UMR 6625, Rennes, France
de Chaumaray, Marie Du Roy
Marbac, Matthieu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes, Ensai, CNRS, CREST UMR 9194, Rennes, FranceUniv Rennes, CNRS, IRMAR, UMR 6625, Rennes, France