THE TENSOR PRODUCT OF f-ALGEBRAS

被引:5
|
作者
Azouzi, Youssef [1 ]
Ben Amor, Mohamed Amine [1 ]
Jaber, Jamel [1 ]
机构
[1] Tunis El Manar Univ, Res Lab Algebra Topol Arithmet & Order, El Manar 2092, Tunisia
关键词
Tensor product; f-algebras; Riesz subspace;
D O I
10.2989/16073606.2017.1382018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Fremlin tensor product of two f-algebras can be endowed with an f-algebra structure and satisfies an appropriate universal property. In particular, the Riesz tensor product C(X)(circle times) over barC(Y) of C(X) and C(Y), where X and Y are topological spaces, is an f-subalgebra of C(X x Y).
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [31] Commutativity of almost F-algebras
    Toumi, Mohamed Ali
    POSITIVITY, 2007, 11 (02) : 357 - 368
  • [32] Preserving operators on semiprime f-algebras
    Jamel, Jaber
    Adnen, Khalfaoui
    POSITIVITY, 2022, 26 (02)
  • [33] ON RIESZ HOMOMORPHISMS IN UNITAL f-ALGEBRAS
    Chil, Elmiloud
    MATHEMATICA BOHEMICA, 2009, 134 (02): : 121 - 131
  • [34] UNITAL EMBEDDING AND COMPLEXIFICATION OF F-ALGEBRAS
    BEUKERS, F
    HUIJSMANS, CB
    DEPAGTER, B
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 131 - 144
  • [35] Vertex F-algebras and their φ-coordinated modules
    Li, Haisheng
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) : 1645 - 1662
  • [36] A NOTE ON ORDER COMPLETE F-ALGEBRAS
    LAVRIC, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (03) : 414 - 418
  • [37] Contractive operators on semiprime f-algebras
    Jaber, Jamel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (05): : 1067 - 1075
  • [38] Preserving operators on semiprime f-algebras
    Jaber Jamel
    Khalfaoui Adnen
    Positivity, 2022, 26
  • [39] Equivalence of F-algebras and cubic forms
    Agrawal, M
    Saxena, N
    STACS 2006, PROCEEDINGS, 2006, 3884 : 115 - 126
  • [40] Derivations on universally complete f-algebras
    Kouki, Naoual
    Toumi, Mohamed Ali
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (01): : 1 - 18