Bottom Reflectance in Ocean Color Satellite Remote Sensing for Coral Reef Environments

被引:20
|
作者
Reichstetter, Martina [1 ]
Fearns, Peter R. C. S. [2 ]
Weeks, Scarla J. [1 ]
McKinna, Lachlan I. W. [3 ,4 ]
Roelfsema, Chris [1 ]
Furnas, Miles [5 ]
机构
[1] Univ Queensland, Sch Geog Planning & Environm Management, Biophys Remote Sensing Res Ctr, St Lucia, Qld 4072, Australia
[2] Curtin Univ, Dept Imaging & Appl Phys, Remote Sensing & Satellite Res Grp, Perth, WA 6845, Australia
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Sci Applicat Int Corp, Mclean, VA 22102 USA
[5] Australian Inst Marine Sci, Townsville, Qld 4810, Australia
基金
澳大利亚研究理事会;
关键词
MODIS; SeaWiFS; optically shallow water; radiative transfer modeling; spectral separability; cluster analysis; GREAT-BARRIER-REEF; SPECTRAL DISCRIMINATION; BENTHIC COMMUNITIES; SHALLOW WATERS; BATHYMETRY; DEPTH; ALGORITHM; SEAGRASS; PATTERNS; BAHAMAS;
D O I
10.3390/rs71215852
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most ocean color algorithms are designed for optically deep waters, where the seafloor has little or no effect on remote sensing reflectance. This can lead to inaccurate retrievals of inherent optical properties (IOPs) in optically shallow water environments. Here, we investigate in situ hyperspectral bottom reflectance signatures and their separability for coral reef waters, when observed at the spectral resolutions of MODIS and SeaWiFS sensors. We use radiative transfer modeling to calculate the effects of bottom reflectance on the remote sensing reflectance signal, and assess detectability and discrimination of common coral reef bottom classes by clustering modeled remote sensing reflectance signals. We assess 8280 scenarios, including four IOPs, 23 depths and 45 bottom classes at MODIS and SeaWiFS bands. Our results show: (i) no significant contamination (R-rscorr < 0.0005) of bottom reflectance on the spectrally-averaged remote sensing reflectance signal at depths >17 m for MODIS and >19 m for SeaWiFS for the brightest spectral reflectance substrate (light sand) in clear reef waters; and (ii) bottom cover classes can be combined into two distinct groups, light and dark, based on the modeled surface reflectance signals. This study establishes that it is possible to efficiently improve parameterization of bottom reflectance and water-column IOP retrievals in shallow water ocean color models for coral reef environments.
引用
收藏
页码:16756 / 16777
页数:22
相关论文
共 50 条
  • [41] 150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean
    Vandermeulen, Ryan A.
    Mannino, Antonio
    Craig, Susanne E.
    Werdell, P. Jeremy
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [42] Evaluation of in situ radiometric data processing for calibration and validation of satellite ocean color remote sensing
    Naik, Puneeta
    Wang, Menghua
    [J]. OCEAN SENSING AND MONITORING VI, 2014, 9111
  • [43] Atmospheric correction of absorbing aerosols for satellite ocean color remote sensing over coastal waters
    Song, Zigeng
    He, Xianqiang
    Bai, Yan
    Dong, Xinyi
    Wang, Difeng
    Li, Teng
    Zhu, Qiankun
    Gong, Fang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 290
  • [44] Effect of the Vertical Distribution of Absorbing Aerosols on the Atmospheric Correction for Satellite Ocean Color Remote Sensing
    Song, Zigeng
    He, Xianqiang
    Bai, Yan
    Wang, Difeng
    Gong, Fang
    Zhu, Qiankun
    Li, Teng
    Li, Hao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Scaling Up Coral Reef Restoration Using Remote Sensing Technology
    Foo, Shawna A.
    Asner, Gregory P.
    [J]. FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [46] Suitability of spectral remote sensing for coral reef surveying, monitoring and mapping
    Gomez, R
    Kafatos, M
    Lewis, A
    [J]. REMOTE SENSING FOR ENVIRONMENTAL MONITORING, GIS APPLICATIONS, AND GEOLOGY II, 2003, 4886 : 363 - 374
  • [47] Remote sensing:: a key tool for interdisciplinary assessment of coral reef processes
    Andréfouët, S
    Riegl, B
    [J]. CORAL REEFS, 2004, 23 (01) : 1 - 4
  • [48] Evolution of Coral Rubble Deposits on a Reef Platform as Detected by Remote Sensing
    Shannon, Amelia M.
    Power, Hannah E.
    Webster, Jody M.
    Vila-Concejo, Ana
    [J]. REMOTE SENSING, 2013, 5 (01) : 1 - 18
  • [49] Confidence Levels, Sensitivity, and the Role of Bathymetry in Coral Reef Remote Sensing
    Goodman, James A.
    Lay, Mui
    Ramirez, Luis
    Ustin, Susan L.
    Haverkamp, Paul J.
    [J]. REMOTE SENSING, 2020, 12 (03)
  • [50] Remote sensing: a key tool for interdisciplinary assessment of coral reef processes
    S. Andréfouët
    B. Riegl
    [J]. Coral Reefs, 2004, 23 : 1 - 4