Materials nanoarchitectonics at two-dimensional liquid interfaces

被引:28
|
作者
Ariga, Katsuhiko [1 ,2 ]
Matsumoto, Michio [1 ]
Mori, Taizo [1 ,2 ]
Shrestha, Lok Kumar [1 ]
机构
[1] Natl Inst Mat Sci, WPI Res Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
关键词
film; interface; low-dimensional material; nanoarchitectonics; self-assembly; LANGMUIR-BLODGETT-FILMS; DEPENDENT ANIMAL-CELLS; LIPID-WATER INTERFACE; CARBON QUANTUM DOTS; AIR-WATER; MOLECULAR RECOGNITION; FULLERENE CRYSTALS; AQUEOUS DIPEPTIDES; NANOPOROUS CARBON; BUILDING-BLOCKS;
D O I
10.3762/bjnano.10.153
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottomup approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
引用
收藏
页码:1559 / 1587
页数:29
相关论文
共 50 条
  • [31] Piezoelectricity in Two-Dimensional Materials
    Wu, Tom
    Zhang, Hua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (15) : 4432 - 4434
  • [32] Piezotronics in two-dimensional materials
    Zhang, Qin
    Zuo, Shanling
    Chen, Ping
    Pan, Caofeng
    INFOMAT, 2021, 3 (09) : 987 - 1007
  • [33] Two-dimensional Materials for Supercapacitors
    Tang J.
    Hua Q.
    Yuan J.
    Zhang J.
    Zhao Y.
    Cailiao Daobao/Materials Review, 2017, 31 (05): : 26 - 35
  • [34] Bioelectronics with two-dimensional materials
    Kang, Pilgyu
    Wang, Michael Cai
    Nam, SungWoo
    MICROELECTRONIC ENGINEERING, 2016, 161 : 18 - 35
  • [35] Spintronics in Two-Dimensional Materials
    Yanping Liu
    Cheng Zeng
    Jiahong Zhong
    Junnan Ding
    Zhiming M. Wang
    Zongwen Liu
    Nano-Micro Letters, 2020, 12
  • [36] The Rise of Two-Dimensional Materials
    Dubertret, Benoit
    Heine, Thomas
    Terrones, Mauricio
    ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (01) : 1 - 2
  • [37] Spintronics in Two-Dimensional Materials
    Yanping Liu
    Cheng Zeng
    Jiahong Zhong
    Junnan Ding
    Zhiming M.Wang
    Zongwen Liu
    Nano-Micro Letters, 2020, 12 (07) : 196 - 221
  • [38] Theory of liquid-mediated strain release in two-dimensional materials
    Batiz, H.
    Guo, Ji
    Ahn, Geun Ho
    Kim, Hyungjin
    Javey, Ali
    Ager, J. W., III
    Chrzan, D. C.
    PHYSICAL REVIEW MATERIALS, 2022, 6 (05)
  • [39] Nanomolding of Two-Dimensional Materials
    Sam, Quynh P.
    Tan, Qishuo
    Multunas, Christian D.
    Kiani, Mehrdad T.
    Sundararaman, Ravishankar
    Ling, Xi
    Cha, Judy J.
    ACS NANO, 2023, 18 (01) : 1110 - 1117
  • [40] TWO-DIMENSIONAL HETEROSTRUCTURE MATERIALS
    Robinson, Joshua A.
    Varanasi, Chakrapani
    Voevodin, Andrey A.
    Li, Lain-Jong
    Robinson, Jeremy T.
    Lou, Jun
    JOURNAL OF MATERIALS RESEARCH, 2016, 31 (07) : 823 - 823