Generalized Orthogonality Relations and SU(1,1)-Quantum Tomography

被引:2
|
作者
Carmeli, C. [1 ,3 ]
Cassinelli, G. [1 ,3 ]
Zizzi, F. [2 ,3 ]
机构
[1] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[2] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[3] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
关键词
Quantum tomography; Representation theory; Orthogonality relations;
D O I
10.1007/s10701-009-9290-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a mathematically precise derivation of some generalized orthogonality relations for the discrete series representations of SU(1,1). These orthogonality relations are applied to derive tomographical reconstruction formulas. Their physical interpretation is also discussed.
引用
收藏
页码:521 / 549
页数:29
相关论文
共 50 条
  • [21] Quantum effects due to the interaction between Su(1,1) and Su(2) quantum systems with damping
    Abdel-Baset A. Mohamed
    Mohamed Sebawe Abdalla
    Abdel-Shafy F. Obada
    The European Physical Journal D, 2017, 71
  • [22] Quantum Analogs of Tensor Product Representations of su(1,1)
    Groenevelt, Wolter
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [23] Quantum dense metrology by an SU(2)-in-SU(1,1) nested interferometer
    Du, Wei
    Chen, J. F.
    Ou, Z. Y.
    Zhang, Weiping
    APPLIED PHYSICS LETTERS, 2020, 117 (02)
  • [24] SU(2) and SU(1,1) Y-Maps in Loop Quantum Gravity
    Leonid Perlov
    Annales Henri Poincaré, 2020, 21 : 2411 - 2431
  • [25] SU(2) and SU(1,1)Y-Maps in Loop Quantum Gravity
    Perlov, Leonid
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2411 - 2431
  • [26] SU(2) AND SU(1,1) ROTATION TRANSFORMATION AND PSEUDOVECTOR MODEL IN QUANTUM OPTICS
    GONG, HQ
    JOURNAL OF MODERN OPTICS, 1992, 39 (11) : 2209 - 2215
  • [27] GENERALIZED SU(1,1) COHERENT-STATE THEORY AND QUANTUM CHARACTERISTICS OF A WEAKLY INTERACTING BOSE SYSTEM
    HUANG, HB
    PHYSICAL REVIEW B, 1993, 47 (21): : 14348 - 14353
  • [28] OSCILLATOR REPRESENTATIONS OF THE LIE-ALGEBRA SU(1,1) AND THE QUANTUM ALGEBRA SUQ(1,1)
    HIRAYAMA, M
    YAMAKOSHI, H
    PROGRESS OF THEORETICAL PHYSICS, 1993, 90 (02): : 293 - 305
  • [29] SU(2) AND SU(1,1) INTERFEROMETERS
    YURKE, B
    MCCALL, SL
    KLAUDER, JR
    PHYSICAL REVIEW A, 1986, 33 (06): : 4033 - 4054
  • [30] Two-mode coherent states for SU(1,1)⊗SU(1,1)
    Gerry, Christopher C.
    Benmoussa, Adil
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (03): : 033812 - 033811