Solving Robin problems in multiply connected regions via an integral equation with the generalized Neumann kernel

被引:1
|
作者
Al-Shatri, Shwan H. H. [1 ]
Murid, Ali H. M. [1 ,2 ]
Ismail, Munira [1 ]
Muminov, Mukhiddin I. [1 ]
机构
[1] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, UTM Ctr Ind & Appl Math UTM CIAM, Ibnu Sina Inst Sci & Ind Res, Johor Baharu 81310, Johor, Malaysia
来源
关键词
Robin problem; Riemann-Hilbert problem; integral equation; generalized Neumann kernel; multiply connected region; RIEMANN-HILBERT PROBLEM; BOUNDARY;
D O I
10.1186/s13661-016-0599-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a boundary integral equation method for finding the solution of Robin problems in bounded and unbounded multiply connected regions. The Robin problems are formulated as Riemann-Hilbert problems which lead to systems of integral equations and the related differential equations are also constructed that give rise to unique solutions, which are shown. Numerical results on several test regions are presented to illustrate that the approximate solution when using this method for the Robin problems when the boundaries are sufficiently smooth are accurate.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Annulus with Circular Slit Map of Bounded Multiply Connected Regions via Integral Equation Method
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Nasser, M. M. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (04) : 945 - 959
  • [22] A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions
    Mohamed M. S. Nasser
    Computational Methods and Function Theory, 2009, 9 (1) : 127 - 143
  • [23] A FAST BOUNDARY INTEGRAL EQUATION METHOD FOR CONFORMAL MAPPING OF MULTIPLY CONNECTED REGIONS
    Nasser, Mohamed M. S.
    Al-Shihri, Fayzah A. A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1736 - A1760
  • [24] Boundary Integral Equations with the Generalized Neumann Kernel for the Neumann Problem
    Nasser, Mohamed M. S.
    MATEMATIKA, 2007, 23 (02) : 83 - 98
  • [25] Automatic Treatment of Multiply Connected Regions in Integral Formulations
    Rubinacci, Guglielmo
    Tamburrino, Antonello
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2791 - 2794
  • [26] Solving an integral equation via generalized controlled fuzzy metrics
    Mani, Gunaseelan
    Gnanaprakasam, Arul Joseph
    Dinmohammadi, Abdollah
    Parvaneh, Vahid
    Mohammadi, Babak
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [27] Solving an integral equation via orthogonal generalized α-ψ-Geraghty contractions
    Prakasam, Senthil Kumar
    Gnanaprakasam, Arul Joseph
    Mani, Gunaseelan
    Jarad, Fahd
    AIMS MATHEMATICS, 2023, 8 (03): : 5899 - 5917
  • [28] Properties of integral operators and solutions for complex variable boundary integral equation in plane elasticity for multiply connected regions
    Chen, Y. Z.
    Wang, Z. X.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 52 : 44 - 55
  • [29] GENERALIZED SCHWARZ INTEGRAL FORMULAS FOR MULTIPLY CONNECTED DOMAINS
    Miyoshi, Hiroyuki
    Crowdy, Darren G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (03) : 966 - 984
  • [30] A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Al-Hatemi, Samer A. A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,