Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm

被引:66
|
作者
Ghigo, Alberto [1 ]
Cottura, Lorenzo [1 ]
Caradonna, Riccardo [1 ]
Bracco, Giovanni [1 ]
Mattiazzo, Giuliana [1 ]
机构
[1] Politecn Torino, Dept Mech & Aerosp Engn, Cso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
offshore wind energy; marine renewable; floating offshore platform; hydrostatic analysis; wind farm; LCOE; cost analysis; LEVELISED COST; ENERGY;
D O I
10.3390/jmse8110835
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Floating offshore wind represents a new frontier of renewable energies. The absence of a fixed structure allows exploiting wind potential in deep seas, like the Atlantic Ocean and Mediterranean Sea, characterized by high availability and wind potential. However, a floating offshore wind system, which includes an offshore turbine, floating platform, moorings, anchors, and electrical system, requires very high capital investments: one of the most relevant cost items is the floating substructure. This work focuses on the choice of a floating platform that minimizes the global weight, in order to reduce the material cost, but ensuring buoyancy and static stability. Subsequently, the optimized platform is used to define a wind farm located near the island of Pantelleria, Italy in order to meet the island's electricity needs. A sensitivity analysis to estimate the Levelized Cost Of Energy is presented, analyzing the parameters that influence it most, like Capacity Factor, Weighted Average Capital Cost (WACC) and number of wind turbines.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [31] Dynamic Analysis of the Mooring System for a Floating Offshore Wind Turbine Spar Platform
    Zhang, D. P.
    Zhu, K. Q.
    Jing, B.
    Yang, R. Z.
    Tang, Z. C.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 796 - 799
  • [32] Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review
    Belvasi, Navid
    Judge, Frances
    Murphy, Jimmy
    Desmond, Cian
    ENERGIES, 2022, 15 (13)
  • [33] Flexible dynamic analysis of an offshore wind turbine installed on a floating spar platform
    Zhu, Xiangqian
    Yoo, Wan-Suk
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (06):
  • [34] Coupled Dynamic Analysis of a Tension Leg Platform Floating Offshore Wind Turbine
    Wang, Teng
    Jin, Hui
    Wu, Xiaoni
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (01):
  • [35] Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform
    Bashetty, Srikanth
    Ozcelik, Selahattin
    INVENTIONS, 2022, 7 (03)
  • [36] DESIGN AND INCLUSION OF A DESALINATION SYSTEM IN A FLOATING OFFSHORE WIND FARM
    Miriello, Davide
    Walker, Michael
    Canizares, Loris
    Smith, Aaron
    Roddier, Dominique
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 6, 2019,
  • [37] Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm
    Pillai, Ajit C.
    Chick, John
    Khorasanchi, Mandi
    Barbouchi, Sami
    Johanning, Lars
    OCEAN ENGINEERING, 2017, 139 : 287 - 297
  • [38] Statoil looks to develop first floating offshore wind farm
    Wagner, Siobhan
    Engineer, 2010, 6-SEPTEMBE
  • [39] Life cycle assessment of a floating offshore wind farm in Italy
    Brussa, Gaia
    Grosso, Mario
    Rigamonti, Lucia
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2023, 39 : 134 - 144
  • [40] Algorithms for Offshore Wind Farm Layout Optimization
    Elkinton, Christopher
    Manwell, James
    McGowan, Jon
    WIND ENGINEERING, 2008, 32 (01) : 67 - 84