Discrete-time Indefinite Stochastic Linear Quadratic Optimal Control: Inequality Constraint Case

被引:0
|
作者
Li, Guiling [1 ]
Zhang, Weihai [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Inequality constraint; KKT theorem; generalized difference Riccati equation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is known that the Karush-Kuhn-Tucker (KKT) theorem gives necessary conditions for the existence of optimal solutions to constrained optimization problems. It is shown that a class of discrete-time indefinite stochastic linear quadratic (LQ) optimal control problems with an inequality constraint on terminal state, can be transformed into a mathematical programming problem with equality and inequality constrains. In this paper, the KKT condition for the existence of optimal linear state feedback controllers is given. More importantly, the previous results on discrete-time stochastic LQ optimal control without constraints or with equality constraints, can be viewed as corollaries of the main theorems of this paper.
引用
收藏
页码:2327 / 2332
页数:6
相关论文
共 50 条
  • [31] Time-inconsistent stochastic linear quadratic control for discrete-time systems
    Qingyuan QI
    Huanshui ZHANG
    [J]. Science China(Information Sciences), 2017, 60 (12) : 44 - 56
  • [32] Time-inconsistent stochastic linear quadratic control for discrete-time systems
    Qi, Qingyuan
    Zhang, Huanshui
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (12)
  • [33] Adaptive Linear-Quadratic Control for Stochastic Discrete-Time Systems
    Chen, H. F.
    Caines, P. E.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (04) : 319 - 334
  • [34] Time-inconsistent stochastic linear quadratic control for discrete-time systems
    Qingyuan Qi
    Huanshui Zhang
    [J]. Science China Information Sciences, 2017, 60
  • [35] Indefinite LQ Optimal Control with Terminal State Constraint for Discrete-Time Uncertain Systems
    Chen, Yuefen
    Yang, Minghai
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016
  • [36] Linear Quadratic Optimal Control for Discrete-time Markov Jump Linear Systems
    Han, Chunyan
    Li, Hongdan
    Wang, Wei
    Zhang, Huanshui
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 769 - 774
  • [37] LINEAR QUADRATIC OPTIMAL-CONTROL OF DISCRETE-TIME IMPLICIT SYSTEMS
    WANG, XM
    BERNHARD, P
    GRIMM, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (04): : 127 - 130
  • [38] New algorithm for discrete-time linear-quadratic control with inequality constraints
    Almutairi, NB
    Hassan, MF
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 (02): : 309 - 336
  • [39] THE LINEAR QUADRATIC OPTIMAL REGULATOR FOR DESCRIPTOR SYSTEMS - DISCRETE-TIME CASE
    BENDER, DJ
    LAUB, AJ
    [J]. AUTOMATICA, 1987, 23 (01) : 71 - 85
  • [40] Discrete-time indefinite linear-quadratic mean field games and control: The finite-population case
    Liang, Yong
    Wang, Bing -Chang
    Zhang, Huanshui
    [J]. AUTOMATICA, 2024, 162