Control analysis of DNA microarray expression data

被引:4
|
作者
Curtis, RK [1 ]
Brand, MD [1 ]
机构
[1] MRC, Dunn Human Nutr Unit, Cambridge CB2 2XY, England
关键词
microarray; transcriptome; gene hunting; metabolic control analysis; regulation analysis;
D O I
10.1023/A:1020358403168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA microarrays produce large amounts of data. Complex changes in gene expression are revealed; sometimes thousands of mRNAs change between experiments. Here we apply modular regulation analysis to microarray data to reveal and quantify the mRNA changes that are important for cellular responses. The mRNAs are sorted into clusters. How strongly a perturbation alters each cluster is multiplied by how strongly each cluster affects an output, to obtain coefficients that describe how much of the change in the output is transmitted through each mRNA cluster. An example published dataset is analysed to reveal that the response ('relative fitness') of yeast to 2-deoxy-D-glucose is not transmitted by a single mRNA cluster, but instead many clusters contribute to the overall response. The method is applicable to microarray, transcriptome, proteome and metabolome data.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [41] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Renée X Menezes
    Marten Boetzer
    Melle Sieswerda
    Gert-Jan B van Ommen
    Judith M Boer
    [J]. BMC Bioinformatics, 10
  • [42] Study DNA microarray gene expression data of Alzheimer's disease by independent component analysis
    Kong, Wei
    Mou, Xiaoyang
    Bin Yang
    [J]. 2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 44 - +
  • [43] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Menezes, Renee X.
    Boetzer, Marten
    Sieswerda, Melle
    van Ommen, Gert-Jan B.
    Boer, Judith M.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [44] Significance and statistical errors in the analysis of DNA microarray data
    Brody, JP
    Williams, BA
    Wold, BJ
    Quake, SR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) : 12975 - 12978
  • [45] A composite gene selection for DNA microarray data analysis
    Dong Kyun Park
    Eun-Young Jung
    Sang-Hong Lee
    Joon S. Lim
    [J]. Multimedia Tools and Applications, 2015, 74 : 9031 - 9041
  • [46] A composite gene selection for DNA microarray data analysis
    Park, Dong Kyun
    Jung, Eun-Young
    Lee, Sang-Hong
    Lim, Joon S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (20) : 9031 - 9041
  • [47] Image metrics in the statistical analysis of DNA microarray data
    Brown, CS
    Goodwin, PC
    Sorger, PK
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) : 8944 - 8949
  • [48] Fuzzy ensemble clustering for DNA Microarray data analysis
    Avogadri, Roberto
    Valentini, Giorgio
    [J]. APPLICATIONS OF FUZZY SETS THEORY, 2007, 4578 : 537 - +
  • [49] Statistical approaches for the analysis of DNA methylation microarray data
    Siegmund, Kimberly D.
    [J]. HUMAN GENETICS, 2011, 129 (06) : 585 - 595
  • [50] ArrayQuest: a web resource for the analysis of DNA microarray data
    Gary L Argraves
    Saurin Jani
    Jeremy L Barth
    W Scott Argraves
    [J]. BMC Bioinformatics, 6