Unifying the derivations for the Akaike and corrected Akaike information criteria

被引:423
|
作者
Cavanaugh, JE [1 ]
机构
[1] UNIV MISSOURI, DEPT STAT, COLUMBIA, MO 65211 USA
关键词
AIC; AICc; information theory; Kullback-Leibler information; model selection;
D O I
10.1016/S0167-7152(96)00128-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike (1973, 1974) information criterion, AIC, and the corrected Akaike information criterion (Hurvich and Tsai, 1989), AICc, were both designed as estimators of the expected Kullback-Leibler discrepancy between the model generating the data and a fitted candidate model. AIC is justified in a very general framework, and as a result, offers a crude estimator of the expected discrepancy: one which exhibits a potentially high degree of negative bias in small-sample applications (Hurvich and Tsai, 1989). AICc corrects for this bias, but is less broadly applicable than AIC since its justification depends upon the form of the candidate model (Hurvich and Tsai, 1989, 1993; Hurvich et al., 1990; Bedrick and Tsai, 1994). Although AIC and AICc share the same objective, the derivations of the criteria proceed along very different lines, making it difficult to reconcile how AICc improves upon the approximations leading to AIC. To address this issue, we present a derivation which unifies the justifications of AIC and AICc in the linear regression framework.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [41] Akaike's information criterion for a measure of linkage disequilibrium
    K. Shimo-onoda
    T. Tanaka
    K. Furushima
    T. Nakajima
    S. Toh
    S. Harata
    K. Yone
    S. Komiya
    H. Adachi
    E. Nakamura
    H. Fujimiya
    I. Inoue
    [J]. Journal of Human Genetics, 2002, 47 : 649 - 655
  • [43] Akaike's information criterion for a measure of linkage disequilibrium
    Shimo-onoda, K
    Tanaka, T
    Furushima, K
    Nakajima, T
    Toh, S
    Harata, S
    Yone, K
    Komiya, S
    Adachi, H
    Nakamura, E
    Fujimiya, H
    Inoue, I
    [J]. JOURNAL OF HUMAN GENETICS, 2002, 47 (12) : 649 - 655
  • [44] Conditional Akaike information for mixed-effects models
    Vaida, F
    Blanchard, S
    [J]. BIOMETRIKA, 2005, 92 (02) : 351 - 370
  • [45] A CONVERSATION WITH AKAIKE,HIROTUGU
    FINDLEY, DF
    PARZEN, E
    [J]. STATISTICAL SCIENCE, 1995, 10 (01) : 104 - 117
  • [46] Assessing risk factors of human complex diseases by Akaike and Bayesian information criteria (AIC and BIC).
    Li, W
    Sherriff, A
    Liu, X
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (04) : 222 - 222
  • [47] The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
    Holder, Mark T.
    Lewis, Paul O.
    Swofford, David L.
    [J]. SYSTEMATIC BIOLOGY, 2010, 59 (04) : 477 - 485
  • [48] AKAIKE INFORMATION CRITERION IN THE EDGE ANALYSIS OF THE SCREEN ELEMENT
    Maretic, Katja Petric
    Milkovic, Marin
    Modric, Damir
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2013, 20 (03): : 441 - 447
  • [49] Finite Sample Improvement of Akaike's Information Criterion
    Saumard, Adrien
    Navarro, Fabien
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6328 - 6343
  • [50] Small-Sample Corrected Akaike Information Criterion: An appropriate statistical tool for ranking of adsorption isotherm models
    Akpa, Onoja M.
    Unuabonah, Emmanuel I.
    [J]. DESALINATION, 2011, 272 (1-3) : 20 - 26