Three-dimensional Rotation-symmetric Number-conserving Cellular Automata

被引:0
|
作者
Wolnik, Barbara [1 ]
Mrozek, Nikodem [1 ]
Dzedzej, Adam [1 ]
De Baets, Bernard [2 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Math, PL-80308 Gdansk, Poland
[2] Univ Ghent, Dept Data Anal & Math Modelling, KERMIT, B-9000 Ghent, Belgium
关键词
RULES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study three-dimensional rotation-symmetric cellular automata with the von Neumann neighborhood that conserve the sum of states. We show that any non-trivial such automaton requires at least seven states, which agrees with intuition based on the known results for the one- and two-dimensional cases. We also give a full characterization of these cellular automata with a seven-element state set and the result is quite surprising.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 50 条
  • [1] Two-dimensional rotation-symmetric number-conserving cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    INFORMATION SCIENCES, 2021, 577 : 599 - 621
  • [2] 5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal
    Imai, Katsunobu
    Ishizaka, Hisamichi
    Poupet, Victor
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 31 - 43
  • [3] On the Non-existance of Rotation-Symmetric von Neumann Neighbor Number-Conserving Cellular Automata of Which the State Number is Less than Four
    Tanimoto, Naonori
    Imai, Katsunobu
    Iwamoto, Chuzo
    Morita, Kenichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (02) : 255 - 257
  • [4] Seven-state rotation-symmetric number-conserving cellular automaton that is not isomorphic to any septenary one
    Wolnik, Barbara
    Nenca, Anna
    Dzedzej, Adam
    De Baets, Bernard
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [5] Eventually number-conserving cellular automata
    Boccara, Nino
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (01): : 35 - 42
  • [6] Number-conserving cellular automata I:: decidability
    Durand, B
    Formenti, E
    Róka, Z
    THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 523 - 535
  • [7] Universality and decidability of number-conserving cellular automata
    Moreira, A
    THEORETICAL COMPUTER SCIENCE, 2003, 292 (03) : 711 - 721
  • [8] Universality of One-Dimensional Reversible and Number-Conserving Cellular Automata
    Morita, Kenichi
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 142 - 150
  • [9] Efficient enumeration of three-state two-dimensional number-conserving cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    INFORMATION AND COMPUTATION, 2020, 274
  • [10] Ternary reversible number-conserving cellular automata are trivial
    Wolnik, Barbara
    De Baets, Bernard
    INFORMATION SCIENCES, 2020, 513 : 180 - 189