Introduction to Mathematical Modeling of Blood Flow Control in the Kidney

被引:0
|
作者
Layton, Anita T. [1 ]
Edwards, Aurelie [2 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Paris 05, Sorbonne Univ, UPMC Univ Paris 06,Ctr Rech Cordeliers, CNRS,INSERM,Sorbonne Paris Cite,UMRS 1138,ERL 822, Paris, France
来源
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
THICK ASCENDING LIMB; TUBULOGLOMERULAR FEEDBACK-SYSTEM; MYOGENIC RESPONSE; AFFERENT ARTERIOLE; RENAL AUTOREGULATION; BIFURCATION-ANALYSIS; MEDIATED DYNAMICS; PRESSURE; RATS; OSCILLATIONS;
D O I
10.1007/978-3-319-60304-9_4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Besides its best known role in the excretion of metabolic wastes and toxins, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, acid-base species, blood volume, and blood pressure. To properly fulfill its functions, it is crucial for the kidney to exercise hemodynamic control. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. In particular, we consider mathematical models that simulate renal blood flow regulation by means of key autoregulatory mechanisms: the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and diseases.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 50 条
  • [31] Navigating cardiovascular dynamics through mathematical modeling of arterial blood flow
    Ali, Shahbaz
    Najjar, I. M. R.
    Sadoun, A. M.
    Fathy, A.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (04)
  • [32] Infusion Pump: Bond Graph Mathematical Modeling for Blood Pressure Control
    Silva, J. P.
    Rodrigues, B. A.
    Casado, J. C. S.
    Rosa, S. S. R. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (06) : 1569 - 1573
  • [33] Mathematical modeling of tundish operation and flow control to reduce transition slabs
    Chen, HQS
    Pehlke, RD
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1996, 27 (05): : 745 - 756
  • [34] Introduction to Mathematical Modeling of Infectious Diseases
    Shrestha, Sourya
    Lloyd-Smith, James O.
    MODELING PARADIGMS AND ANALYSIS OF DISEASE TRANSMISSION MODELS, 2010, 75 : 1 - 46
  • [35] Introduction to Mathematical Modeling and Chaotic Dynamics
    Denes, Attila
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2): : 351 - 352
  • [36] Introduction of a glossary of mathematical modeling terms: Facilitating translational mathematical modeling.
    Hunt, C. A.
    An, G.
    SHOCK, 2006, 25 : 42 - 42
  • [37] INTRODUCTION REVIEW OF MATHEMATICAL-MODELING
    JACKSON, RRP
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1985, 6 (02): : 172 - 172
  • [38] Mathematical modeling of a two spool flow control servovalve using a pressure control pilot
    Anderson, RT
    Li, PY
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2002, 124 (03): : 420 - 427
  • [39] A Mathematical Model of Cerebral Blood Flow Control: Role of Kir Channels
    Moshkforoush, Arash
    Longden, Thomas
    Dabertrand, Fabrice
    Nelson, Mark
    Tsoukias, Nikolaos
    FASEB JOURNAL, 2017, 31
  • [40] Mathematical modeling of blood flow through a stenosed artery under body acceleration
    Ahmad Reza Haghighi
    Soraya Asadi Chalak
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 : 2487 - 2494