H-mode scrape-off layer power width in the TCV tokamak

被引:13
|
作者
Maurizio, R. [1 ,4 ]
Duval, B. P. [1 ]
Labit, B. [1 ]
Reimerdes, H. [1 ]
Faitsch, M. [2 ]
Komm, M. [3 ]
Sheikh, U. [1 ]
Theiler, C. [1 ]
机构
[1] Swiss Plasma Ctr SPC, Ecole Polytech Fed Lausanne EPFL, CH-1015 Lausanne, Switzerland
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] CAS, Inst Plasma Phys, Slovankou 3, Prague 18200 8, Czech Republic
[4] Gen Atom, San Diego, CA 92186 USA
基金
瑞士国家科学基金会;
关键词
divertor power exhaust; TCV; scrape-off layer width;
D O I
10.1088/1741-4326/abd147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Obtaining acceptable conditions at the divertor targets of a next-step fusion experiment based on the tokamak concept is expected to be particularly challenging because of the small predicted value of the plasma power exhaust channel width. An increased confidence in this prediction is important to forestall any power exhaust issue and in developing corresponding divertor solutions. With the present prediction relying on empirical scaling laws based on data from six tokamaks, this letter tests these scaling laws on an additional device, the TCV tokamak. Estimates of the exhaust channel width, lambda(q), based on Thomson scattering measurements of the electron temperature and density profiles, correlate well with outer target infrared thermography. Reasonable agreement with multi-device scaling laws is found only when including both the power crossing the separatrix and the Greenwald density fraction as regression parameters. TCV's lambda(q) is 2 to 3 times smaller than in spherical tokamaks for the same value of the poloidal field. The inclusion of TCV data in the scaling laws would, therefore, require the retention of an explicit aspect ratio dependence, with consequences for all other dependencies.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Ion temperature anisotropy in the tokamak scrape-off layer
    Zhao, Menglong
    Rognlien, Tom
    Jarvinen, Aaro
    Joseph, Ilon
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (12)
  • [42] Radial current and flows in the scrape-off layer of a tokamak
    Van Schoor, M
    Weynants, R
    JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 1240 - 1246
  • [43] CHARACTERIZATION OF THE SCRAPE-OFF LAYER PLASMA IN THE FTU TOKAMAK
    RIDOLFINI, VP
    ZAGORSKI, R
    CRISANTI, F
    GRANUCCI, G
    MAZZITELLI, G
    PIERONI, L
    ROMANELLI, F
    JOURNAL OF NUCLEAR MATERIALS, 1995, 220 : 218 - 222
  • [44] Plasma flows in scrape-off layer of Aditya tokamak
    Sangwan, Deepak
    Jha, Ratneshwar
    Brotankova, Jana
    Gopalkrishna, M. V.
    PHYSICS OF PLASMAS, 2012, 19 (09)
  • [45] Radial current and flows in the scrape-off layer of a tokamak
    Van Schoor, M
    Weynants, R
    PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (03) : 403 - 427
  • [46] Ideal ballooning modes in the tokamak scrape-off layer
    Halpern, Federico D.
    Jolliet, Sebastien
    Loizu, Joaquim
    Mosetto, Annamaria
    Ricci, Paolo
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [47] Radial transport in the far scrape-off layer of ASDEX Upgrade during L-mode and ELMy H-mode
    Ionita, C.
    Naulin, V.
    Mehlmann, F.
    Rasmussen, J. J.
    Mueller, H. W.
    Schrittwieser, R.
    Rohde, V.
    Nielsen, A. H.
    Maszl, Ch.
    Balan, P.
    Herrmann, A.
    NUCLEAR FUSION, 2013, 53 (04)
  • [48] Scrape-off layer turbulence in TCV: evidence in support of stochastic modelling
    Theodorsen, A.
    Garcia, O. E.
    Horacek, J.
    Kube, R.
    Pitts, R. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [49] Simulations of scrape-off layer power width for EAST H-mode plasma and ITER 15 MA baseline scenario by 2D electrostatic turbulence code
    Liu, X.
    Nielsen, A. H.
    Rasmussen, J. J.
    Naulin, V
    Wang, L.
    Ding, R.
    Li, J.
    NUCLEAR FUSION, 2022, 62 (07)
  • [50] Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak
    Wu, Ting
    Xu, Min
    Nie, Lin
    Yu, Yi
    Xu, Jianqiang
    Long, Ting
    He, Yu
    Cheng, Jun
    Yan, Longwen
    Huang, Zhihui
    Ke, Rui
    Shi, Peng
    Wang, Shuo
    Liu, Bing
    PLASMA SCIENCE & TECHNOLOGY, 2021, 23 (02)