A time dependent Bayesian nonparametric model for air quality analysis

被引:17
|
作者
Gutierrez, Luis [1 ]
Mena, Ramses H. [2 ]
Ruggiero, Matteo [3 ,4 ]
机构
[1] Univ Chile, Fac Med, Escuela Salud Publ, Santiago, Chile
[2] IIMAS UNAM, Mexico City, DF, Mexico
[3] Univ Turin, I-10124 Turin, Italy
[4] Coll Carlo Alberto, Moncalieri, Italy
基金
欧洲研究理事会;
关键词
Dirichlet process; Density estimation; Dependent process; Stick-breaking construction; Particulate matter; STICK-BREAKING PROCESSES; DIRICHLET PROCESSES; EXTREME VALUES; DENSITY-ESTIMATION; NEURAL-NETWORKS; MEXICO-CITY; OZONE PEAKS; DISTRIBUTIONS; STATISTICS; PREDICTION;
D O I
10.1016/j.csda.2015.10.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Air quality monitoring is based on pollutants concentration levels, typically recorded in metropolitan areas. These exhibit spatial and temporal dependence as well as seasonality trends, and their analysis demands flexible and robust statistical models. Here we propose to model the measurements of particulate matter, composed by atmospheric carcinogenic agents, by means of a Bayesian nonparametric dynamic model which accommodates the dependence structures present in the data and allows for fast and efficient posterior computation. Lead by the need to infer the probability of threshold crossing at arbitrary time points, crucial in contingency decision making, we apply the model to the time-varying density estimation for a PM2.5 dataset collected in Santiago, Chile, and analyze various other quantities of interest derived from the estimate. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 50 条
  • [31] Trajectory analysis and semantic region modeling using a nonparametric Bayesian model
    Wang, Xiaogang
    Ma, Keng Teck
    Ng, Gee-Wah
    Grimson, W. Eric L.
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2932 - +
  • [32] Nonparametric Bayesian analysis for multi-site hidden Markov model
    Kim, Dal Ho
    Jo, Aejung
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4896 - 4907
  • [33] A Bayesian nonparametric meta-analysis model for estimating the reference interval
    Cao, Wenhao
    Chu, Haitao
    Hanson, Timothy
    Siegel, Lianne
    STATISTICS IN MEDICINE, 2024, 43 (10) : 1905 - 1919
  • [34] Bayesian Nonparametric Customer Base Analysis with Model-Based Visualizations
    Dew, Ryan
    Ansari, Asim
    MARKETING SCIENCE, 2018, 37 (02) : 216 - 235
  • [35] Embedding Gestalt Principles to Hierarchical Distance Dependent Nonparametric Bayesian Model for Video Segmentation
    Gao, Yue
    2019 3RD INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS 2019), 2019, : 317 - 322
  • [36] A Bayesian Nonparametric Approach for Time Series Clustering
    Nieto-Barajas, Luis E.
    Contreras-Cristan, Alberto
    BAYESIAN ANALYSIS, 2014, 9 (01): : 147 - 169
  • [37] BAYESIAN NONPARAMETRIC SURVIVAL ANALYSIS - COMMENT
    GENEST, C
    KALBFLEISCH, J
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) : 780 - 780
  • [38] Bayesian Nonparametric Longitudinal Data Analysis
    Quintana, Fernando A.
    Johnson, Wesley O.
    Waetjen, L. Elaine
    Gold, Ellen B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1168 - 1181
  • [39] Nonparametric population modeling and Bayesian analysis
    Jelliffe, Roger
    Neely, Michael
    Schumitzky, Alan
    Bayard, David
    Van Guilder, Michael
    Botnen, Andreas
    Bustad, Aida
    Laing, Derek
    Yamada, Walter
    Bartroff, Jay
    Tatarinova, Tatiana
    PHARMACOLOGICAL RESEARCH, 2011, 64 (04) : 426 - 426
  • [40] A BAYESIAN ANALYSIS OF SOME NONPARAMETRIC FUNCTIONS
    FERGUSON, TS
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1878 - &